• Title/Summary/Keyword: Phase image analysis

Search Result 395, Processing Time 0.033 seconds

Image Cut Raman Microscope Study of the Geryong Mountain Chulwha Buncheong Ware (Image Cut Raman Microscope을 사용한 계룡산 철화 분청사기 연구)

  • Lim, Seong-Ho;Kim, Young-Bum;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • Chulwha pieces collected from Hakbong-ri site in Keryong mountain were studied whether there is reactions or not in each layer to investigate firing condition of glaze, body, Chulwha, engobe of Buncheong ware in the early Chosun Dynasty, 15th~16th Century. As a result of XRD analysis of a Chulwha piece, a main crystal phase was $\alpha$-Quartz and a second was Mullite. It was assumed the firing temperature would be around $1200^{\circ}C$ because a little amount of Mullite was formed in the body and there was no phase transition $\alpha$-Quartz to cristobalite. As a result of ICRM analysis, Chulwha and glaze didn't react and the melted glazes were sunk into the Chunwha particles. The thin layer of glaze was found on the Chulwha layer. As a result, the color of Chulwha layer always came to vivid black. Moreover, Chulwha painting didn't spread over the Buncheong ware, because Chulwha and engobe didn't react. The boundary interface of engobe and body was not clear because they had similar compositions. This shows engobe was composed of more $Al_2O_3$ than body.

Single-pixel Autofocus with Plasmonic Nanostructures

  • Seok, Godeun;Choi, Seunghwan;Kim, Yunkyung
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • Recently, the on-chip autofocus (AF) function has become essential to the CMOS image sensor. An auto-focus usually operates using phase detection of the photocurrent difference from a pair of AF pixels that have focused or defocused. However, the phase-detection method requires a pair of AF pixels for comparison of readout. Therefore, the pixel variation may reduce AF performance. In this paper, we propose a color-selective AF pixel with a plasmonic nanostructure in a 0.9 μ㎡ pixel. The suggested AF pixel requires one pixel for AF function. The plasmonic nanostructure uses metal-insulator-metal (MIM) stack arrays instead of a color filter (CF). The color filters are formed at the subwavelength, and they transmit the specific wavelength of light according to the stack period and incident angles. For the optical analysis of the pixel, a finite-difference time-domain (FDTD) simulation was conducted. The analysis showed that the MIM stack arrays in the pixels perform as an AF pixel. As the primary metric of AF performance, the resulting AF contrasts are 1.8 for the red pixels, 1.6 for green, and 1.5 blue. Based on the simulation results, we confirmed the autofocusing performance of the MIM stack arrays.

Implementation for Texture Imaging Algorithm based on GLCM/GLDV and Use Case Experiments with High Resolution Imagery

  • Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.626-629
    • /
    • 2004
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program for GLCM algorithm is newly implemented in the MS Visual IDE environment. While, additional texture imaging modules based on GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV texture variables, it composed of six types of second order texture function in the several quantization levels of 2(binary image), 8, and 16: Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality, four directions are provided as $E-W(0^{\circ}),\;N-E(45^{\circ}),\;S-W(135^{\circ}),\;and\;N-S(90^{\circ}),$ and W-E direction is also considered in the negative direction of E- W direction. While, two direction modes are provided in this program: Omni-mode and Circular mode. Omni-mode is to compute all direction to avoid directionality problem, and circular direction is to compute texture variables by circular direction surrounding target pixel. At the second phase of this study, some examples with artificial image and actual satellite imagery are carried out to demonstrate effectiveness of texture imaging or to help texture image interpretation. As the reference, most previous studies related to texture image analysis have been used for the classification purpose, but this study aims at the creation and general uses of texture image for urban remote sensing.

  • PDF

Thermodynamic Approach to the Mixture Formation Process of Evaporative Diesel Spray (증발디젤분무의 혼합기 형성과정에 대한 열역학적 접근)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.201-206
    • /
    • 2009
  • The focus of this work is placed on the analysis of the mixture formation process under the evaporative diesel-free spray conditions. In order to examine homogeneity of mixture within the vapor phase region of the injected spray, image analysis was carried out based on the entropy of statistical thermodynamics. As an experimental parameter, the injection pressure and ambient gas density were selected, and effects of the injection pressure and density variation of ambient gas on the mixture formation process in the evaporative diesel spray were investigated. In the case of application of the thermodynamic entropy analysis to evaporative diesel spray, the value of the dimensionless entropy always increases with increase in time from injection start. Consequently, the dimensionless entropy in the case of the higher injection pressure is higher than that of lower injection pressure during initial injection period.

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

A Development of Stereo Camera based on Mobile Road Surface Condition Detection System (스테레오카메라 기반 이동식 노면정보 검지시스템 개발에 관한 연구)

  • Kim, Jonghoon;Kim, Youngmin;Baik, Namcheol;Won, Jaemoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.177-185
    • /
    • 2013
  • PURPOSES : This study attempts to design and establish the road surface condition detection system by using the image processing that is expected to help implement the low-cost and high-efficiency road information detection system by examining technology trends in the field of road surface condition information detection and related case studies. METHODS : Adapted visual information collecting method(setting a stereo camera outside of the vehicle) and visual information algorithm(transform a Wavelet Transform, using the K-means clustering) Experiments and Analysis on Real-road, just as four states(Dry, Wet, Snow, Ice). RESULTS : Test results showed that detection rate of 95% or more was found under the wet road surface, and the detection rate of 85% or more in snowy road surface. However, the low detection rate of 30% was found under the icy road surface. CONCLUSIONS : As a method to improve the detection rate of the mobile road surface condition information detection system developed in this study, more accurate phase analysis in the image processing process was needed. If periodic synchronization through automatic settings of the camera according to weather or ambient light was not made at the time of image acquisition, a significant change in the values of polarization coefficients occurs.

Dark-Blood Computed Tomography Angiography Combined With Deep Learning Reconstruction for Cervical Artery Wall Imaging in Takayasu Arteritis

  • Tong Su;Zhe Zhang;Yu Chen;Yun Wang;Yumei Li;Min Xu;Jian Wang;Jing Li;Xinping Tian;Zhengyu Jin
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.384-394
    • /
    • 2024
  • Objective: To evaluate the image quality of novel dark-blood computed tomography angiography (CTA) imaging combined with deep learning reconstruction (DLR) compared to delayed-phase CTA images with hybrid iterative reconstruction (HIR), to visualize the cervical artery wall in patients with Takayasu arteritis (TAK). Materials and Methods: This prospective study continuously recruited 53 patients with TAK (mean age: 33.8 ± 10.2 years; 49 females) between January and July 2022 who underwent head-neck CTA scans. The arterial- and delayed-phase images were reconstructed using HIR and DLR. Subtracted images of the arterial-phase from the delayed-phase were then added to the original delayed-phase using a denoising filter to generate the final-dark-blood images. Qualitative image quality scores and quantitative parameters were obtained and compared among the three groups of images: Delayed-HIR, Dark-blood-HIR, and Dark-blood-DLR. Results: Compared to Delayed-HIR, Dark-blood-HIR images demonstrated higher qualitative scores in terms of vascular wall visualization and diagnostic confidence index (all P < 0.001). These qualitative scores further improved after applying DLR (Dark-blood-DLR compared to Dark-blood-HIR, all P < 0.001). Dark-blood DLR also showed higher scores for overall image noise than Dark-blood-HIR (P < 0.001). In the quantitative analysis, the contrast-to-noise ratio (CNR) values between the vessel wall and lumen for the bilateral common carotid arteries and brachiocephalic trunk were significantly higher on Dark-blood-HIR images than on Delayed-HIR images (all P < 0.05). The CNR values were significantly higher for Dark-blood-DLR than for Dark-blood-HIR in all cervical arteries (all P < 0.001). Conclusion: Compared with Delayed-HIR CTA, the dark-blood method combined with DLR improved CTA image quality and enhanced visualization of the cervical artery wall in patients with TAK.

Analysis of Image Quality and Optimized Reconstruction Window through Heart Rate and Its Variation in Retrospectively ECG-gated Coronary Angiography Using Multi-Detector Row CT

  • Lee, Sang-Ho;Park, Byoung-Wook;Kim, Hee-Joung;Haijo Jung;Kang, Won-suk;Son, Hye-Kyung;Choe, Kyu-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.461-463
    • /
    • 2002
  • Image quality and selection of optimized window for good quality reconstruction in coronary angiography using multi-detector row CT (MDCT) have not been studied by heart rate and its variation. Therefore, the effect of heart rate and its variation was systemically analyzed. Eighty-three patients were undergone contrast-enhanced coronary angiography using MDCT. In this study, sixty cases were enrolled. Two radiologists graded image quality as follows: 4, excellent; 3, good; 2, fair; l, bad. The starting points of the reconstruction window were chosen at seventy and forty percent of R wave interval. Optimized window was scored as 1 when 40% reconstruction was better quality than 70%, as 2 when 40% reconstruction is same as 70%, and as 3 when 70% reconstruction was better than 40%. Regression analysis was performed. The range of variation of beats per minute (BPM) was well correlated with image quality (r=-0.55, p=0.000), however correlation with optimized window percentage was not statistically significant (p=0.969). By contraries, median value of BPM was comparatively well correlated with optimized window grade (r=-0.24, p=0.086). Median value of BPM was not well correlated with image quality (r=0.l70, p=0.l97). Image quality is more affected by variation of heart rate (VHR) than by higher heart rate. Selection of optimized reconstruction window for good image quality is mainly affected by heart rate and there is a tendency that systolic phase reconstruction is better in image quality than diastolic reconstruction in higher heart rate.

  • PDF

A Study on the Safety Diagnosis for Electric Power Systems Using Thermal Imaging Analysis (열화상 분석을 이용한 전력시스템의 안전진단에 관한 연구)

  • Yu, Byeong-Yeol;Kim, Chan-O
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, the safety diagnosis using thermal image analysis is described for power equipments. The conventional three-phase comparison method has only provided the results of thermal comparison for the equipments. The proposed method defines the conditions of poor connection by visual checks, and supports the criteria with each thermal rise step. As a result, the thermal difference from $5^{\circ}C$ to $10^{\circ}C$ meant the warning state. In addition, the thermal difference more than $10^{\circ}C$ meant that the connection status was unbalanced. In this case, the countermeasure might be the internal load distribution. If the thermal difference more than $20^{\circ}C$ is observed, it means a hot spot at the poor connection. If the hot spot is observed all over the surface, its cause was the unbalanced load, which made the conductive parts discolored and raised the possibility of oxidization or $Cu_2O$ generation. This diagnostic technology employing thermal image analysis method can be directly applied in the field and ensures the safety of equipments.

Quantitative Measurement of the Glottal Area Waveform(GAW) in Unilateral Vocal Fold Paralysis (편측성대마비환자에서의 성문면적파형(Glottal Area Waveform)의 정량적 측정)

  • 최홍식;김명상;최재영;안성윤;이세영;홍정표
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Type Ⅰ thyuroplasty in conjunction with arytenoid adduction is one of the excellent techniques in the treatment of unilateral vocal fold paralysis. But perioperative objective evaluation of the patients is difficult. With the development of the videostroboscopy and image analysis program, we could quantify the Glottal Area Waveform(GAW) in patients with unilateral vocal fold paralysis and investigated the relationship between the glottal area and aerodynamic and acoustic parameters. Eight female patients who were performed type Ⅰ thyroplasty in conjunction with arytenoid adduction and 5 females with normal vocal function were involved in this study. Preoperative and postoperative videostroboscopy and vocal function study wire performed. GAW was analysed quantitatively with image analysis program (Kay Stroboscope Image analysis, KSIP) Peak Glottal Area(PGA), Baseline Offset(BO), and Closing Phase(CP) were increased in patients with unilateral vocal fold paralysis and they were reduced after the operation. Mean flow Rate (MFR) was well correlated with the PGA in normal control group and unilateral vocal fold paralysis patients. Noise to harmonic ratio(NHR) was correlated with PGA only in preoperative unilateral vocal fold paralysis patients. In conclusion quantitative measurement of the GAW is useful method in evaluation of unilateral vocal f31d paralysis patients.

  • PDF