• Title/Summary/Keyword: Phase field simulation

Search Result 338, Processing Time 0.024 seconds

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis (수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.468-479
    • /
    • 2019
  • It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

Analysis of Building Emergency Evacuation Process with Interactions in Human Behaviors (화재 시 재실자 행동의 상호 작용을 고려한 건물 피난 행태 분석)

  • Choi, Minji;Park, Moonseo;Lee, Hyun-Soo;Hwang, Sungjoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.6
    • /
    • pp.49-60
    • /
    • 2013
  • Evacuation process has been considered as one of the most important elements to be managed in public facilities. Although the importance is highlighted through numerous literatures, disaster evacuation planning, particularly fire accidents, faces a number of human behavior related limitations for a similar application to different types of facilities/occupants. To overcome the obstacles including complexity in human behaviors, a number of simulation techniques with limited consideration on human behaviors are utilized to predict foreseeable problems in evacuation process. Therefore, this research aims to propose system dynamics models incorporating human behaviors considering different types of occupants under disaster evacuation events. Analysis on emergent human behaviors such as group forming and interactions under urgent situation are conducted based on the main stream theories in social science field. The results suggest the influences of human behavior factors including cooperative intention, information sharing, and mobility change to evacuation behavior. The implications are expected to provide safety consideration at planning/designing phase of buildings and help facility safety managers for evacuation planning with more realistic management approaches.

Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(고립파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.92-108
    • /
    • 2017
  • Present work shows a numerical method to analysis of interaction analysis between solitary wave and onshore bridge. Numerical simulation is carried out by TWOPM-3D (three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. To do this, the solitary wave is generated numerically in numerical wave channel, and numerical results and experimental results were compared and analyzed in order to verify the applicability of force acting on an onshore bridge. From this, we discussed precisely the characteristics of horizontal and vertical forces (uplift and downward forces) changes including water level and velocity changes due to the variation of solitary wave height, water depth, onshore bridge's location and type, and number of girder. Furthermore, It is revealed that the maximum horizontal and vertical forces acting on the girder bridge show different varying properties according to the number of girder, although each maximum force acting on the girder bridge is proportional to the increasement of incident solitary wave height, and the entrained air in the fluid flow affects the vertical force highly.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

A Joint Application of DRASTIC and Numerical Groundwater Flow Model for The Assessment of Groundwater Vulnerability of Buyeo-Eup Area (DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Lee, Hyun-Ju;Park, Eun-Gyu;Kim, Kang-Joo;Park, Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.77-91
    • /
    • 2008
  • In this study, we developed a technique of applying DRASTIC, which is the most widely used tool for estimation of groundwater vulnerability to the aqueous phase contaminant infiltrated from the surface, and a groundwater flow model jointly to assess groundwater contamination potential. The developed technique is then applied to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. The input thematic data of a depth to water required in DRASTIC model is known to be the most sensitive to the output while only a few observations at a few time schedules are generally available. To overcome this practical shortcoming, both steady-state and transient groundwater level distributions are simulated using a finite difference numerical model, MODFLOW. In the application for the assessment of groundwater vulnerability, it is found that the vulnerability results from the numerical simulation of a groundwater level is much more practical compared to cokriging methods. Those advantages are, first, the results from the simulation enable a practitioner to see the temporally comprehensive vulnerabilities. The second merit of the technique is that the method considers wide variety of engaging data such as field-observed hydrogeologic parameters as well as geographic relief. The depth to water generated through geostatistical methods in the conventional method is unable to incorporate temporally variable data, that is, the seasonal variation of a recharge rate. As a result, we found that the vulnerability out of both the geostatistical method and the steady-state groundwater flow simulation are in similar patterns. By applying the transient simulation results to DRASTIC model, we also found that the vulnerability shows sharp seasonal variation due to the change of groundwater recharge. The change of the vulnerability is found to be most peculiar during summer with the highest recharge rate and winter with the lowest. Our research indicates that numerical modeling can be a useful tool for temporal as well as spatial interpolation of the depth to water when the number of the observed data is inadequate for the vulnerability assessments through the conventional techniques.

Runoff of Endosulfan by Rainfall Simulation and from Soybean-grown Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 endosulfan의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Ihm, Yang-Bin;Im, Geon-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2007
  • Three different experiments were carried out to investigate the runoff and erosion losses of endosulfan from sloped-field by rainfall. The mobility of endosulfan and which phase it was transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide loss were evaluated in simulated rainfall study, and the pesticide losses from soybean-grown field comparing with bare soil were measured in field lysimeter study. Adsorption parameter (K) of endosulfan ranged from 77 to 131 by adsorption method and K values by the desorption method were higher than those by the adsorption method. By the SSLRC's classification for pesticide mobility endosulfan was classified as non-mobile class ($K_{oc}>4,000$). Runoff and erosion loss of endosulfan by three rainfall scenarios ranged from 3.4 to 5.6%and from 4.4 to 15.6%of the amount treated. Endosulfan residues were mainly remained at the top 5 cm of soil depth after the simulated rainfall study. Pesticide loss in case of 30%-slope degree ranged from 0.6 to 0.9 times higher than those in case of 10%-slope degree. The difference of pesticide runoff loss was related with its concentration in runoff water and the difference of pesticide erosion loss would related closely with the quantity of soil eroded. Endosulfan losses from a series of lysimeter plots in sloped land by rainfall ranged from 5 to 35% of the amount treated. The erosion rate of endosulfan from soybean-plots was 66% of that from bare soil plots. The effect of slope conditions was not great for runoff loss, but was great for erosion loss as increasing to maximum $4{\sim}12$ times with slope degree and slope length. The peak runoff concentration of endosulfan in soybean-plots and bare soil plots ranged from 8 to 10 and from 7 to $9{\mu}gL^{-1}$ on nine plots with different slope degree and slope length. Therefore the difference of the peak runoff concentrations between bare soil plots and soybean-plots were not great.

Runoff of Diazinon and Metolachlor by Rainfall Simulation and from Soybean Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 diazinon과 metolachlor의 유출량 평가)

  • Kim, Chan-Sub;Lee, Byung-Moo;Park, Byung-Jun;Jung, Pil-Kyun;Choi, Ju-Hyeon;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.279-288
    • /
    • 2006
  • Three different experiments were undertaken to investigate the runoff and erosion loss of diazinon and metolachlor from sloped-field by rainfall. The mobility of two pesticides and which phase they were transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide losses were evaluated in simulated rainfall study, and the pesticide losses from soybean field comparing with bare soil were measured in field lysimeter study. Freundlich adsorption parameter (K) ranged $1.6{\sim}2.0$ for metolachlor and $4.0{\sim}5.5$ for diazinon. The K values of pesticides by the desorption method were higher than those ones by the adsorption method. Another parameter (1/n) in Freundlich equation for the pesticides tested ranged $0.96{\sim}1.02$ by desorption method and $0.87{\sim}1.02$ by adsorption method. By the SSLRC's classification for pesticide mobility of diazinon and metolachlor were classified as moderately mobile ($75{\leq}Koc$ <500). Runoff and erosion losses of pesticides by three rainfall scenarios were $0.5{\sim}1.0%$ and $0.1{\sim}0.7%$ for metolachlor and $0.1{\sim}0.6%$ and $0.1{\sim}0.2%$ for diazinon. Distribution of pesticides in soil polite were investigated after the simulated rainfall events. Metolachlor was leached to $10{\sim}15$ cm soil layer and diazinon was leached to $5{\sim}10$ cm soil layer. Losses of each pesticide in the 30% of sloping degree treatment were $0.2{\sim}1.9$ times higher than those ones in the 10% of sloping degree treatment. Pesticide losses from a series of lysimeter plots in sloped land by rainfall ranged $1.0{\sim}3.1%$ for metolachlor and $0.23{\sim}0.50%$ for diazinon, and were $1/3{\sim}2.5$ times to the ones in the simulated rainfall study. The erosion rates of pesticides from soybean-plots were $21{\sim}75%$ lower than the ones from bare soil plots. The peak runoff concentration in soybean-plots and bare soil plots were $1{\sim}9{\mu}gL^{-1}$ and $3{\sim}16{\mu}gL^{-1}$ for diazinon, $7{\sim}31{\mu}gL^{-1}$ and $5{\sim}40{\mu}gL^{-1}$ for metolachlor, respectively.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Analysis of Influential Factors on Wax Deposition for Flow Assurance in Subsea Oil Production System (해저 석유생산시스템에서 유동안정성 확보를 위한 왁스집적 영향요소 분석 연구)

  • Jung, Sun-Young;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.662-669
    • /
    • 2015
  • There has been an increased interest in the mitigation of wax deposition because wax, which usually accumulates in subsea oil-production systems, interrupts stable oil production and significantly increases the cost. To guarantee a required oil flow by mitigating wax deposition, we need to obtain a reliable estimation of the wax deposition. In this research, we perform simulations to understand the major mechanisms that lead to wax deposition, namely molecular diffusion, shear stripping reduction, and aging. While the model variables (shear reduction multiplier, wax porosity, wax thermal conductivity, and molecular diffusion multiplier) can be measured experimentally, they have high uncertainty. We perform an analysis of these variables and the amount of water and gas in the multiphase flow to determine these effects on the behavior of wax deposition. Based on the results obtained during this study for a higher wax porosity and molecular diffusion multiplier, we were able to confirm the presence of thicker wax deposits. As the shear reduction multiplier decreased, the thickness of the wax deposits increased. As the amount of water increased, there was also an increase in the amount of wax deposits until 40% water cut and decreased. As the amount of gas increased, the amount of wax deposits increased because of the loss of the light hydrocarbon component in the liquid phase. The results of this study can be utilized to estimate the wax deposition behavior by comparing the experiment (or field) and simulation data.