• Title/Summary/Keyword: Phase equilibrium

Search Result 596, Processing Time 0.035 seconds

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

Non-astronomical Tides and Monthly Mean Sea Level Variations due to Differing Hydrographic Conditions and Atmospheric Pressure along the Korean Coast from 1999 to 2017 (한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.11-36
    • /
    • 2021
  • The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.

A Study on the Tidal Current State of Myeongnyang Strait on the Date of Myeongnyang Sea Battle, by Orbital Period of Celestial Body (천체의 궤도 운동 주기 분석을 통한 명량대첩 당시의 명량수도 조류 상태에 관한 연구)

  • Kim, Hyun-Jong
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.209-215
    • /
    • 2015
  • Miraculous victory of Myeongnyang sea battle turned the tide of the Joseon's entire war against Japan and it is regarded as one of the most remarkable sea victories in the world history. In the sea battle of Myeongnyang, on September 16, 1597(lunar calender), the Joseon navy with 13 battle ships, led by Admiral Yi Sun-sin, won the Japanese navy with their fleet of 133 warships. There were several reasons why Admiral Yi decided on this location for battle. Myeongnyang strait is so narrow and had currents so powerful that many ships could not pass strait simultaneously. Therefore, despite being vastly outnumbered, Admiral Yi used terrain and tidal current advantage to defeat Japanese navy's numerical advantage. In order to find out the tidal state of Myeongnyang strait on September 16, 1597, topological phase of sun and moon was studied by orbital period of earth and moon. The tidal state of Myeongnyang strait on September 16, 1597 is estimated based on the theories of tide and tide tables. As a result of this study, time of slack water were found to be 0636, 1248, 1906 and time/speed of maximum tidal current were found to be 0930/8.3kts(NW), 1612/9.9kts(SE).

Effects of Sulfobutyl Ether $\beta$-Cyclodextrin on Physicochemical Properties of Dexamethasone Dipropionate

  • Moon, Jee-Hyun;Oh, Ik-Sang;Chun, In-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.116-116
    • /
    • 1997
  • Complex formation of practically insoluble dexamethasone dipropionate (DDP) with ${\beta}$-cyclodextrin (${\beta}$-CD), dimethyl-${\beta}$-cyclodextrin (DMCD), trimethyl-${\beta}$-cyclodextrin (TMCD), 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD) and sulfobutyl ether ${\beta}$-cyclodextrin (SBCD) in water was investigated by solubility method at various temperatures. Water solubility of DDP was found to be 1.78 $\mu\textrm{g}$/$m\ell$ at 37$^{\circ}C$. Propylene glycol (PG)-water cosolvent increased the solubility of DDP, but the solubilization was not sufficient (8.93 $\mu\textrm{g}$/$m\ell$ in 20% PG). The addition of CD markedly increased the solubility of DDP in water, and A$\sub$L/ type phase solubility diagrams were obtained with ${\beta}$-CD, TMCD, HPCD and SBCD, where the apparent stability constants of the soluble complexes at 25$^{\circ}C$ were determined to be 1388, 216, 1054, and 1992 M$\^$-1/, respectively. However, DMCD remarkably increased the solubility of DDP, and showed an A$\sub$P/ type diagram, suggesting that DMCD forms a soluble complex of high order with DDP. The stability constant for the DDP-DMCD complex at 25$^{\circ}C$ was determined to be 19132 M$\^$-1/. The thermodynamic parameters were calculated for the inclusion complex formation in aqueous solution. CD (1${\times}$10$\^$-2/M) remarkably decreased the partition coefficients of DDP between isopropyl myristate/water in the order of TMCD < ${\beta}$-CD < HPCD < SBCD < DMCD, and in squalane/water system in the order of HPCD < TMCD < ${\beta}$-CD < DMCD < DMCD $\leq$ SBCD. This finding represents that, in a o/w type cream, cyclodextrin complexation with DDP may result in high concentration of DDP in aqueous phase. The permeation of DDP through a cellophane membrane was highly suppressed by the addition of CD, and the degree of suppression was different among CDs, indicating that CD may control the skin permeation of DDP. The dissolution rates of solid dispersions with CDs were much faster than those of drugs alone and corresponding physical mixtures. All DDP-CD solid dispersions exceeded the equilibrium solubility. Consequently these results suggest that complex formation of DDP with CDs may provide useful means to markedly enhance the solubility, and CDs are useful in the semi-solid preparations such as creams and gels for topical application.

  • PDF

Correlation Between Walking Speeds and Lower Extremities Joint Moment in Obese (비만인들의 보행속도와 하지관절모멘트에 대한 상관관계 분석)

  • Shin, Sung-Hyoo;Kim, Tae-Whan;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.105-115
    • /
    • 2006
  • The purpose of this study is to elucidate the mechanical characteristics of lower extremity joint movements at different walking speeds in obese people and suggest the very suitable exercise for obese person's own body weight and basic data for clinical application leading to medical treatment of obesity. This experimental subjects are all males between the ages of 20 and 30, who are classified into two groups according to Body Mass Index(BMI): one group is 15 people with normal body weight and the other 15 obese people. Walking speed is analysed at 3 different speeds ($1.5^m/s$, $1.8^m/s$, $2.1^m/s$) which is increased by $0.3^m/s$ from the standard speed of $1.5^m/s$. We calculated joint moments of lower extremity during stance phase through video recording and platform force measurement.Two-way ANOVA(Analysis of Variance, Mix) is applied to get the difference of moments according to walking speeds between normal and obese groups. Pearson's Correlation Analysis is applied to look into correlation between walking speeds and joint moments in both groups. Significance level of each experiment is set as ${\alpha}=.05$. As walking speed increases maximum ankle plantar flexion moment in the stance phase is smaller in obese group than in normal group, which is suggestive of weak toe push-off during terminal stance in obese group, and the highest maximum ankle plantar flexion moment in obese group during the middle speed walking($1.8^m/s.$). Maximum ankle dorsal flexion moment in obese group is relatively higher than in normal group and this is regarded as a kind of compensatory mechanism to decrease the impact on ankle when heel contacts the floor. Maximum knee flexion and extension moments are both higher in normal group with an increase tendency proportional to walking speed and maximum hip flexion and extension moments higher in obese group. In summary, maximum ankle plantar flexion moment between groups(p<.025), maximum knee moment not in flexion but in extension(p<.001) within each group according to increasing walking speed, and maximum hip flexion and extension moment(p<.001 and p<.004, respectively according to increasing walking speed are statistically significant but knee and hip moments between groups are not. Pearson correlation are different: high correlation coefficients in maximum knee flexion and extension moments, in maximum hip extension moment but not hip flexion, and in maximum ankle dorsal flexion moment but not ankle plantar flexion, in each group. We suspect that equilibrium imbalance develops when the subject increases walking speed and the time is around which he takes his foot off the floor.

Extraction of Yttrium and Europium with Fatty Acids as Extractants (지방산계 추출제에 의한 이트륨과 유로피움의 분리)

  • Bang, Kyung-Mo;Ryu, Ho-Jin;Choi, Min-Bae;Kang, Ho-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.509-513
    • /
    • 2010
  • Recently, an amount of waste electronic devices such as LED and trichromatic fluorescent lamp has increased with the development of electronic industry. Reportedly, rare earth metals such as yttrium and europium have been discovered in the waste electronic devices. In order to improve the selectivity of yttrium and europium, the effects of the following factors on recovery experiment have been considered : i) fatty acids with various alkyl chain lengths, ii) the concentration of extractant, and iii) pH. The results show that the extraction efficiencies decrease at the same pH with decreasing the concentration of extractant and so $pH_{0.5}$ (That value of pH in an aqueous phase at which the distribution ratio is unity at equilibrium: 50% of the solute is extracted (E = 0.5) only when the phase ratio is unity.) moves into higher pH. The highest selectivity of yttrium and europium was obtained with tetradecanoic acid as extractant. The extraction mechanism of yttrium and europium was varied with the change of concentration of the tetradecanoic acid. $MR_3$single-species was formed from the yttrium and europium ion in the extractant concentration less than 0.1 M. On the other hand, the yttrium or europium ion is solvated with three molecules of tetradecanoic acid monomer like $MR_3{\cdot}$ 3RH in the extractant concentration more than 0.1 M.

TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging (공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.18-27
    • /
    • 2006
  • Air Sparging (IAS, AS) is a ground-water remediation technique, in which organic contaminants are volatilized into air as they rise from saturated to vadose soil zone. This study was conducted to investigate the variation characteristics of TPH, VOCs and $CO_2$ for air sparging of diesel contaminated saturated soil. Initial TPH concentration was 10,000 mg/kg for saturated soil phase and 1,001 mg/L for soil aquifer phase. After 36 days of air sparging, the equilibrium temperature of 2-Dimension experiment system was $24.9{\pm}1.5^{\circ}C$. The saturated soil TPH concentration (in the C10 port close to air diffuser) was reduced to 66.0% of the initial value. The mass amount of $CO_2$ was 3,800 mg and 3,200 mg in air space (C70 port) and in unsaturated soil zone (C50 port), respectively. The VOCs production kinetic parameter was 0.164/day in the air space (C70 port) and 0.182/day in the unsaturated soils (C50 port).

Treatment of Nickel Ions in Water Phase Using Biochar Prepared from Liriodendron tulipifera L. (백합나무 유래 biochar를 이용한 수중에서 니켈 이온의 처리)

  • Choi, Suk Soon;Choi, Jung Hoon;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.529-533
    • /
    • 2017
  • In this work, a new type of biosorbent was prepared from the biochar of Liriodendron tulipifera L. by adding an activation process using water vapor. By using the biosorbent, the removal characteristics of nikel ions in the water phase were investigated. When the equilibrium experiments to remove both 5 and 10 mg/L of nikel ions were performed, the adsorption amount of nickel ions was 4.2 and 5.4 mg/g, respectively. Also, the optimal initial pH was 6 to increase the removal efficiency with respect to two different nickel concentrations of 5 and 10 mg/L. To enhance the removal efficiency of 10 mg/L of nikel ions, a chemical treatment using critic acid was applied for the biosorbent. In addition, 100% removal efficiency was observed for 10 mg/L of nikel ions when the experiment was conducted for 2 h using the modified biosorbent treated by 4 M of critic acid. The results of desorption experiment to recover nikel ions indicated that 0.1 M of nitrilotriacetic acid (NTA) was selected as the optimal desorption agent. Consequently, these experimental results could be employed as an economical and environmentally friendly technology for the development of nickel removal processes.