• Title/Summary/Keyword: Phase distribution analysis

Search Result 963, Processing Time 0.035 seconds

Phase Shift Analysis and Phase Identification for Distribution System with 3-Phase Unbalanced Constant Current Loads

  • Byun, Hee-Jung;Shon, Sugoog
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.729-736
    • /
    • 2013
  • Power grids are large complicated networks in use around. An absolute phase value for a particular unknown-phase line at a local site should be identified for the operation and management of a 3-phase distribution network. The phase shift for a specific point in the line, as compared with a phase reference point at a substation, must be within a range of ${\pm}60^{\circ}$ for correct identification. However, the phase shift at a particular point can fluctuate depending on the line constants, transformer wiring method, line length, and line amperage, etc. Conducted in this study is a theoretical formulation for the determination of phase at a specific point in the line, Simulink modeling, and analysis for a distribution network. In particular, through evaluating the effects of unbalanced current loads, the limitations of the present phase identification methods are described.

A New fault Location Algorithm for a Line to Ground fault Using Direct 3-phase Circuit Analysis in Distribution Power Networks (3상회로 직접해석에 의한 배편계통 1선지락사고 고장거리 계산 알고리즘)

  • Choe, Myeon-Song;Lee, Seung-Jae;Lee, Deok-Su;Jin, Bo-Geon;Min, Byeong-Un
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.409-416
    • /
    • 2002
  • This paper presents a fault location algorithm using direct 3-phase circuit analysis for distribution power networks. The unbalanced feature of distribution networks due to single phase loads or asymmetric operation prohibits us from using the conventional symmetrical component transformation. Even though the symmetrical component transformation provides us with a very easy tool in three phase network analysis, it is limited to balanced systems in utilizing its strong point, which is not suitable for distribution networks. In this paper, a fault location algorithm using direct 3-phase circuit analysis is developed. The algorithm is derived and it Is shown that the proposed method if we use matrix inverse lemma, is not more difficult then the conventional methods using symmetrical component transformation. Since the symmetrical component transformation is not used in the suggested method, unbalanced networks also can be handled with the same difficulty as balanced networks. The case study results show the correctness and effectiveness of the proposed algorithm.

Comparative Analysis of Voltage Unbalance Factor on the use of Linear and Non-linear loads in Three-phase Four-wire Low Voltage Distribution Line (3상 4선식 저압 배전선로에서 선형 및 비선형 부하의 사용시 전압 불평형률 비교 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.587-592
    • /
    • 2017
  • In the three-phase four-wire low-voltage power distribution equipment, single-phase and three-phase load have been used mainly mixed. Also linear and nonlinear loads have been used together in the same conditions. In a three-phase four-wire distribution line, the current distribution of three-phase linear load is almost constant in each phase during driving or stopping, but the single-phase load is different from each other for each phase in accordance with the operation and stop. So that the voltage unbalance is caused by the current difference of each phase. In the three-phase four-wire distribution system, non-linear load is used with linear load. The presence of single-phase nonlinear loads can produce an increase in harmonic currents in three-phase and neutral line. It can also cause voltage unbalance. In the present study, we analyzed for the voltage unbalance fluctuations by the operation pattern of the single and three-phase linear and non-linear load in three-phase four-wire low voltage distribution system.

Analysis of the Magnetic Field and Eddy Current Characteristics in Isolated Phase Bus System (상분리 모선의 자계 및 와전류 특성 해석)

  • Kim, Jin-Su;Ha, Deok-Yong;Choe, Seung-Gil;Gang, Hyeong-Bu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.509-516
    • /
    • 2001
  • Isolated phase bus(IPS) has a special structure for carrying large current generated by a generator to a main transformer. In the analysis of IPB, the understanding of the magnetic field distribution generated by large current is important. Especially, while the bus conductor current is flowing, almost same amount of current as bus conductor current is induced in the enclosures under the influence of time varying magnetic field, and therefore the large electric loss and the deterioration of insulating capability might occur due to Joule heating effect. Hence for the optimal design of IPB satisfying the condition to minimize the loss, the accurate analysis of magnetic field distribution and the eddy current characteristics of three phase isolated phase bus have been investigated. In the analysis of time varying magnetic field, instead of finite difference method(FDM) which is generally used, finite element method with phasor concept is investigated under the assumption that the bus current is purely sinusoidal. The characteristics is studied along the phase angle by comparing the effect of eddy current on the magnetic field distribution with the case that eddy current is not considered, and also the effect of material, thickness and radius of enclosure on the eddy current distribution is discussed.

  • PDF

A Study for a load flow analysis algorithm in the three-phase distribution network (3상 배전계통에서의 부하조류해석 알고리즘에 관한 연구)

  • Ryu, Jae-Hong;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.150-152
    • /
    • 2000
  • This paper introduces an advanced three-phase load flow analysis algorithm in the radial distribution network. This method is an extension of the Novel method for solving radial distribution networks with the emphasis on expanding from single phase to three-phase. The proposed method involves only simple algebraic computation without any form of Jacobian matrix but has a desirable convergence characteristic. Computationally, The suggested technique is very efficient and requires less computer memory storage and maintains high execution speed. Also, the submitted process can be easily programmed and be simply extended to different types of load characteristics. A simulation results applied to the IEEE 34 bus radial distribution feeder are examined by using the MATLAB.

  • PDF

A New Line to Line Fault Location Algorithm in Distribution Power Networks using 3 Phase Direct Analysis (3상회로의 직접해석에 의한 송배전계통 선간단락 사고 고장거리 계산 알고리즘)

  • Choe, Myeon-Song;Lee, Seung-Jae;Im, Seong-Il;Jin, Bo-Geon;Lee, Deok-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.467-473
    • /
    • 2002
  • In this paper, a fault location algorithm is suggested for line to line faults in distribution networks. Conventional fault location algorithms use the symmetrical component transformation, a very useful tool for transmission network analysis. However, its application is restricted to balanced network only. Distribution networks are, in general, operated in unbalanced manners, therefore, conventional methods cannot be applied directly, which is the reason why there are few research results on fault location in distribution networks. Especially, the line to line fault is considered as a more difficult subject. The proposed algorithm uses direct 3-phase circuit analysis, which means it can be applied not only to balanced networks but also to unbalanced networks like distribution a network. The comparisons of simulation results between one of conventional methods and the suggested method are presented to show its effectiveness and accuracy.

An Extraction Technique of Automatic Recognizing Regions on Power Distribution Facility Map by Partial Extension (부분확장에 의한 배전설비도면의 자동인식 대상영역 추출 방법)

  • Kim, Gye-Young;Lee, Bong-Jae;Cho, Seon-Ku;Woo, Hee-Gon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1349-1355
    • /
    • 1999
  • A power distribution facility map is drawn on cadastral map. Besides, grid lines are added on the map for sectionalization. For automatic recognition of the map, we first extract recognizing regions. In this paper, we propose an extraction method of recognizing regions by partially extending thinned image. The proposed method is consist of three phases, binarization phase, thinning phase and partial extending phase. The first phase generate a binary image using threshold value which is obtained by histogram analysis. The binary image contains many part of recognizing regions, but not all. The second phase generate thinned image which is generated by appling thinning operator to the binary image. And the third phase extends thinned image from terminal point until satisfying termination condition. The proposed method is tested on several power distribution facility maps, and the results are presented.

  • PDF

Analysis of Strain Distribution According to Change in the Vacancy Shape of the Lightweight Dual-Phase Structure (경량화된 이중상 구조의 중공 형태 변화에 따른 변형률 분포 분석)

  • Lee, J.A.;Kim, Y.J.;Jeong, S.G.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.267-272
    • /
    • 2022
  • A dual-phase structure refers to a material with two different phases of components or crystal structures. In this study, we analyze the stress distributions for harmonic and composite structured materials which are a kind of dual-phase structure materials. The finite element method (FEM) was used to progress compression test to analyze the strain distribution, and rather than constituted of a fully dense material, a dual-phase structure was designed to make a lightweight structure that has different shapes and volumes of vacancy in each case. As a result of each case, the dual-phase structured materials showed different stress distribution patterns and based on this, the cause was identified through the research.

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.

Distribution of the Concentration of Fuel Vapor in DI Gasoline Sprays Under Evaporation Condition (증발 조건에서 직분식 가솔린 분무의 증기 농도의 분포)

  • Hwang, S.C.;Choi, D.S.;Cha, K.J.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • The concentration and spatial distribution of vapor phases in DI (Direct Injection) gasoline spray were measured quantitatively by exciplex fluorescence method. Fluorobenzene and DEMA (diethylmethylamine) in a solution of hexane were used as the exciplex-forming dopants. The fluorescence intensity of vapor phase were obtained by ICCD camera with the appropriate filter The relationship between fluorescence intensity and vapor concentration was induced fer the purpose of a quantitative analysis. The 2-D vapor/liquid images of fuel spray were captured under the evaporation condition, and the spatial distribution of vapor concentration was obtained. The spatial distribution of liquid phase had hollow-cone shape. And the vapor phase was widely distributed in the whole spray. The behavior of vapor phase was significantly affected by second flow such as entrainment, vortex, while that of liquid phase was scarcely affected.

  • PDF