• Title/Summary/Keyword: Phase analysis

Search Result 11,817, Processing Time 0.043 seconds

Novel Modular 3-phase AC-DC Flyback Converter for Telecommunication

  • Park, Ju-Yeop;Lee, Jong-Pil;Kim, Taek-Yong;Song, Joong-Ho;Ick Choy
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.212-219
    • /
    • 2002
  • A novel mode of parallel operation of a modular 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper tile detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purpose and also experimental results are included to confirm the validity of the analysis.

Drive System Design for a Permanent Magnet Motor with Independent Excitation Winding for an Electric Bicycle

  • Son, Young-Dae;Kang, Gyu-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.623-630
    • /
    • 2010
  • This paper presents the implementation and characteristic analysis of a drive system for a three-phase permanent magnet motor with independent excitation winding that is applicable for electric bicycles. The design features improves the phase current waveform, output power, and torque by using advance angle control. This adjusts the phase angle of each phase current in relation to back EMF. In addition, a DC-side PI current control is performed through PWM generation circuit using a low-cost one-chip microcontroller and a CPLD chip, resulting in reduced system costs. Finally, the validity of this control scheme for driving electric bicycles and output/torque improvement characteristics are verified through analysis and experimental results.

Multi-Phase Optimization of Quill Type Machine Structures(1) (Static Compliance Analysis & Multi-Objective Function Optimization) (퀼형 공작기계구조물의 다단계 최적화(1) (정강성 해석 및 다목적함수 최적화))

  • Lee, Yeong-U;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.155-160
    • /
    • 2001
  • To achieve high precision cutting as well as production capability in the machine tool, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In order to predict the qualitative behavior of a machine tool, simultaneous analysis of mechanics and heat transfer is required. Generally, machine tool designers have solved designing problems based on partial estimation of the specified rigidity. This study clears the inter-relationship between therm, and propose multi-phase optimization of machine tool structure using a genetic algorithm. The multi-phase solution method is consists of a series of mechanical design problem. At this first phase of static design problem, multi-objective optimization for the purpose of minimization of the total weight and static compliance minimization is solved using the Pareto Genetic Algorithm.

  • PDF

Evaluation of Diesel Engine Structural Vibration Using Phase Vector Sum (Phase vector sum을 이용한 디젤엔진 구조진동의 평가)

  • 이수목;김관영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.383-388
    • /
    • 2003
  • As an effective way of response evaluation in structural vibration analysis, the phase vector sum(PVS) method used in shaft torsional vibration analysis is introduced. Basic relation of PVS applicable to structural problem is derived and applied to Diesel engine structures. Concepts of forced phase vector sum (FPVS) and significance level (SL) are proposed to visualize the correlation between excitation orders and vibration modes in the SL map. The maximum responses and SL are compared and reviewed to confirm the validity of the method. It is regarded FPVS is adequate to newly evaluate the structural vibration based on excitation information.

  • PDF

Numerical Analysis on the Performance for Automobile Heat Storage System Using Phase Change Materical (상변화물질을 이용한 자동차용 열저장 시스템의 성능을 위한 수치 해석)

  • 이관수;김혁제;백창인;송영길;한창섭;김등진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.187-198
    • /
    • 1996
  • In this study, the performance of an automobile heat storage system using PCM is numerically simulated. For the analysis of system performance. The phase-change of the PCM and the transient forced convective heat transfer for the HTF are considered simultaneously as a conjugate problem. The phase-change behavior is effectively analyzed using a concept of thermal resistance. From the correlations of phase change rate and heat transfer due to the variations of flow rate of HTF around PCM, the automobile heat storage system performance is predicted. The present results amy be used as the fundamental information for the design of automobile heat storage system.

  • PDF

Phase Model Analysis of Yeast Glycolytic Oscillation

  • Kim, Won-Sup;Han, Seung-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.78-78
    • /
    • 2003
  • The glycolysis is one of the most important metabolic reactions through which the glucose is broken and the released energy is stored in the form of ATP. Rhythmic oscillation of the intracellular ATP is observed as the amount of the influx glucose is small in the yeast. The oscillation is also observed in the population of the yeast cells, which implies that the glycolytic oscillation of the yeasts is synchronous. It is not clear how the synchronous oscillation could be organized among the yeast cells. Although detailed mathematical models are available that show synchronization of the glycolytic oscillation, the stability of the synchronous oscillation is not clear. We introduce a phase model analysis that reduces a higher dimensional mathematical model to a much simpler one dimensional phase model. Then, the stability of the synchronous oscillation is easily determined by the stability of the corresponding fixed solution in the phase model. The effect of perturbation on the oscillatory rhythm is also easily analyzed in the reduced phase model.

  • PDF

A study on Characteristics analysis of time sharing type high frequency resonant inverter using a Phase-Shift (Phase-Shift를 이용한 시분할방식 고주파 공진 인버터의 특성 해석에 관한 연구)

  • Cho, G.P.;Lee, E.W.;Bae, Y.H.;Yoon, S.H.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1168-1170
    • /
    • 2000
  • A half bridge time sharing type high frequency resonant inverter to give VVVF function in the inverter used as power source of induction heating at high frequency is presented in this paper, this paper also realize the output control of independence irrespective of the switching frequency using Phase-Shift. The analysis of the proposed circuit is generally described by using the normalized parameters. Also, the principle of basic operation and the its characteristics are estimated by the parameters, such as switching frequency, the variation of phase angle(${\varphi}$) of Phase-Shift. It is certain that the proposed circuit will be used and expanded in the high frequency power supplies like induction heating systems.

  • PDF

A Study on the Development of BLDC Motor with High Power Density (고출력 브러시레스 직류전동기 개발에 관한 연구)

  • Kim, Hyeon-Cheol;Gong, Yeong-Gyeong;Choe, Tae-In;Song, Jong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.297-304
    • /
    • 2000
  • The motor for torpedo propulsion is needed the compact and short rating high power characteristics. This paper describes the development of the motor through the theory and Finite Element Method(FEM) analysis for Brushless Direct Current Motor(BLDCM) of 7 phase 6 poles. Back EMF, inductance and eddy current loss were analyzed. The proposed methods like magnetic wedge acquired by these FEM analysis were introduced. Phase-leading angle using encoder was used. Test results on the motor of 7 phase 6 poles were showed the validity of proposed methods and phase-leading angle.

  • PDF

The Analysis of the Inductance Profile in the Single Phase SRM for Blower (송풍기 구동용 단상 SRM의 인덕턴스 해석)

  • Lee Jong-Han;Lee Eun-Woong;Kim Yong-Heon;Ku Tae-Man
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1025-1027
    • /
    • 2004
  • Recently, the Single phase SRM has been researched and developed in many appliances with various types. This paper presents a theoretical representation of the phase inductance of a single phase SRM, as function of position and current, taking into account the non-linearity of the magnetic circuit. The method is based on the Fourier series expansion. the theoretical expressions for the calculation of instantaneous phase inductance, flux linkage, coenergy and electromagnetic torque as a function of rotor position and winding currents are derived. And it is compared with the results of the finite element analysis.

  • PDF

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.