• Title/Summary/Keyword: Phase Variable

Search Result 1,066, Processing Time 0.029 seconds

The Analysis of Partial Discharges Pattern using Discrete Wavelet Transform (이산 웨이브렛변환에 의한 부분방전패턴 분석)

  • 이현동;이광식;이동인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.84-89
    • /
    • 2001
  • This paper deals with multiresolution analysis of wavelet transform for partial discharge(PD), composite discharge(corona + surlace discharge). Multiresolution analysis was used for performing discrete wavelet transform PD signals was decomposed into "approximation" and "detail" cOmpJnents until 4 levels by using discrete wavelet analysis. In this paper, daubechies family is adopted for the research of the characteristics of PD signals. 1be results show that in corona discharge the segment 7, 8, 9, 10, 1] values of defined variable is increased with discharge process, so phase distribution is characterized by 210~330 ranges. In case surface discharge in expoxy insulator inserted, defined variable values is fairly symmetric chscharge pattern because coupled both corona and dielectric oounded discharges. We can confimJly discriminate the type of PD source.

  • PDF

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

A Study on the Efficiency Improvement of a 3D Shape Measuring Apparatus With High Speed (고속 3차원 형상 측정 장치의 효율성 향상에 관한 연구)

  • 박승규;이일근;이영훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.4
    • /
    • pp.104-109
    • /
    • 2001
  • In this paper, we designed a 3D shape measuring system with high speed and high measurement resolution using line-shaped sine stripes of a LCD projector We proposed an effective method to improve measurement efficiency for a 3D shape measuring system by finding the deficient shape information areas and recovering the shape information efficiently. We experimentally confirmed the improvement of measurement efficiency. Deficient shape information areas can be inevitably existed in a acquired image caused by the camera view angle and surface shapes of an object. The measurement efficiency is turned out to be improved by extracting these shadow areas and recovering the shape information efficiently using both a variable rated normalization and a variable sized phase recovering windows.

  • PDF

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity

  • Shimizu, Yuma;Khayyer, Abbas;Gotoh, Hitoshi
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-86
    • /
    • 2022
  • A refined projection-based purely Lagrangian meshfree method is presented towards reliable numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with incorporation of volume fraction. These principal equations of mixture are discretized in the context of Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), resulting in modified source term. The linear and nonlinear force terms are included in momentum equation to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical examples including the interactions between fluid flow and saturated/unsaturated porous media of uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of particle volumes and regular distributions of particles at the interface between fluid and porous media.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

Optical Encryption using a Random Phase Image and Shift Position in Joint Transform Correlation Plane (결합 변환 상관 평면의 이동 변위와 무작위 위상 영상을 이용한 광 암호화 시스템)

  • Shin, Chang-Mok;Lee, Woo-Hyuk;Cho, Kyu-Bo;Kim, Soo-Joong;Seo, Dong-Hoan;Lee, Sung-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.248-255
    • /
    • 2006
  • Most optical security systems use a 4-f correlator, Mach-Zehnder interferometer, or a joint transform correlator(JTC). Of them, the JTC does not require an accurate optical alignment and has a good potential for real-time processing. In this paper, we propose an image encryption system using a position shift property of the JTC in the Fourier domain and a random phase image. Our encryption system uses two keys: one key is a random phase mask and the other key is a position shift factor. By using two keys, the proposed method can increase the security level of the encryption system. An encrypted image is produced by the Fourier transform for the multiplication image, which resulted from adding position shift functions to an original image, with a random phase mask. The random phase mask and position shift value are used as keys in decryption, simultaneously. For the decryption, both the encrypted image and the key image should be correctly located on the JTC. If the incorrect position shift value or the incorrect key image is used in decryption, the original information can not be obtained. To demonstrate the efficiency of the proposed system, computer simulation is performed. By analyzing the simulation results in the case of blocking of the encrypted image and affecting of the phase noise, we confirmed that the proposed method has a good tolerance to data loss. These results show that our system is very useful for the optical certification system.

A Search for New Variable Stars in the Open Cluster NGC 129 using a Small Telescope (소형망원경을 이용한 산개성단 NGC 129 영역의 변광성 탐사)

  • Lee, Eun-Jung;Jeon, Young-Beom;Lee, Ho;Park, Hong-Suh
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.87-104
    • /
    • 2007
  • As part of the SPVS (Short-Period Variability Survey) which is a wide-field $(90'{\times}60')$ photometric monitering program at Bohyunsan Optical Astronomy (BOAO), we performed V band time-series CCD photometric observations ofthe young open cluster NGC 129 for 11 nights between October 12, 2004 and November 3, 2005 using the 155mm refractor equipped with $3K{\times}2K$ CCD camera. From the observation we obtained 2400 V band CCD frames and color-magnitude diagram of the cluster. To transform instrumental magnitude to standard magnitude, we applied ensemble normalization technique to all observed time-series data. After the photometric reduction process, we examined variations of 9537 stars. As a result, sixty six of the new variable stars were discovered. To determine the periods of the sevariables, we used DFT(Discrete Fourier Transform) and phase-matching technique. According to light curve shape, period, amplitude and the position on a C-M diagram, we classified these variables as 9 SPB type, 9 ${\delta}$ Scuti type, 29 eclipsing, 17 long term variables. However, two of them were not classified. From this study, we learned that small telescopes could be a very useful tool to observe variable stars in the open cluster in survey program.

A Design of Ultra Compact S-Band PCM/FM Telemetry Transmitter (초소형 S-대역 PCM/FM 텔레메트리 송신기 설계 및 제작)

  • Jun, Ji-ho;Park, Ju-eun;Kim, Seong-min;Min, Se-hong;Lee, Jong-hyuk;Kim, Bok-ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.801-807
    • /
    • 2022
  • In this paper, we propose an ultra compact S-Band PCM/FM telemetry transmitter. The equipment is compact, so it can be applied to a limited space and capable of stable data transmission was designed and manufactured even with specifications set differently for each operating environment and system. RF direct conversion structure is used for the miniaturization of equipment, an RF transmission board, Power distribution board, and a signal processing board were implemented on a single PCB, so that the function of the transmitter could be performed with a minimum device. According to the target specification, variable output of 1~10W and variable data rate of 390kbps~12.5Mbps is possible in S-Band(2,200~2,400MHz) without degradation of performance. To verify the performance of the equipment, the RF performance test and BER measurement test were performed after the equipment was manufactured. It was confirmed that the OBW, null-to-null bandwidth, 1st IMD, Spurious emission, Phase noise specification of the PCM/FM modulated signal which is presented by the IRIG standard were satisfied, and we can confirm the data received using the transmitter inspection equipment were transmitted normally without distortion.

Comparison of Kinematics and Myoelectrical Activity during Deadlift, with and without Variable Banded Resistance, in Healthy, Trained Athletes

  • Everett B. Lohman;Mansoor Alameri;Fulden Cakir;Chih Chieh Chia;Maxine Shih;Owee Mulay;Kezia Marceline;Simran Jaisinghani;Gurinder Bains;Michael DeLeon;Noha Daher
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.1
    • /
    • pp.53-70
    • /
    • 2024
  • Background: The conventional deadlift is a popular exercise for enhancing trunk, core, and lower extremity strength. However, its use in sports medicine is constrained by concerns of lumbar injuries, despite evidence supporting its safety and rehabilitative benefits. To optimize muscle activation using resistive bands in variable resistance therapy, we explored their feasibility in the deadlift. Design: Comparative experimental design Methods: Surface electromyography recorded muscle activity in the trunk and lower extremities during lifting, with normalization to the isometric Floor Lift using Maximal Voluntary Contraction. Kinematics were measured using inclinometer sensors to track hip and trunk sagittal plane angles. To prevent fatigue, each subject only used one of the three pairs of bands employed in the study. Results: Our study involved 45 healthy subjects (mean age: 30.4 ± 6.3 years) with similar baseline characteristics, except for years of lifting and strength-to-years-of-lifting ratio. Various resistance band groups exhibited significantly higher muscle activity than conventional deadlifts during different phases. The minimal resistance band group had notably higher muscle activity in the trunk, core, and lower extremity muscles, particularly in the end phase. The moderate resistance band group showed increased muscle activity in the mid-and end-phases. The maximum resistance band group demonstrated greater muscle activity in specific muscles during the early phase and overall higher activity in all trunk and lower extremity muscles in the mid and end phases of the deadlift (p<0.05). Conclusion: Our findings provide valuable insights into muscle activation with various resistance bands during deadlift exercise in clinical and gym settings. There appears to be a dose-response relationship between increased resistance bandwidth, external load, myoelectric activation, and range.