• Title/Summary/Keyword: Phase Transfer Catalyst

Search Result 69, Processing Time 0.028 seconds

Tin-Free Three-Component Coupling Reaction of Aryl Halides, Norbornadiene (or Norbornene), and Alkynols Using a Palladium Catalyst

  • Choi, Cheol-Kyu;Hong, Jin-Who;Tomita, Ikuyoshi;Endo, Takeshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.112-118
    • /
    • 2002
  • Good-to-excellent yields of 2,3-Disubstituted norbornenes (or norbornanes) were obtained using a Pd/Cu catalyzed three-component ternary coupling reaction of aryl halides, norbornadiene (or norbornene), and alkynols in toluene at $100{\circ}C$ in the presence of 5.5 M NaOH as a base and benzyltriethylammonium chloride as a phase transfer catalyst. The results of experiments using various aromatic halides suggest that the ternary coupling reaction is promoted by bromide.

Preparation of Supported CTAB/MCM-41 and CTAB-Nafion/MCM-41 Mesoporous Molecular Sieve and Their Use in the Brominating Reaction (담지된 CTAB/MCM-41 and CTAB-Nafion/MCM-41 메조다공성 분자체의 제조 및 브롬화 반응에 사용)

  • Hu, Guoqin;Li, Hua;Liu, Juan;Zhu, Jiang
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.691-696
    • /
    • 2011
  • CTAB or CTAB-Nafion catalyst were successfully supported on siliceous hollow tubular MCM-41 which synthesized by hydrothermal method using CTAB as a single template or CTAB and Nafion-Na as mixed templates. The properties of two kinds of catalysts were characterized with XRD, SEM and adsorption and desorption isotherms of nitrogen and pore diameter distribution, respectively. Then they were applied to catalyze brominating reaction of 1,7-heptanediol, moreover the rate of brominating reaction with different catalysts was compared. The results showed that catalytic activities of CTAB/MCM-41 and CTAB-Nafion/MCM-41 are better than CTAB, and that of CTAB-Nafion/MCM-41 is the best because of its phase-transfer and strong acidity function. The two kinds of catalysts can be separated from the reactive products and recycled.

First Total Synthesis of (-)-Antofine by Using Catalytic Phase Transfer Alkylation.

  • Lee, Jae-Kwang;Lee, Tae-Ho;Park, Hyeung-Geun;Kim, Deuk-Joon;Kim, Sang-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.183.3-183.3
    • /
    • 2003
  • Phenanthroindolizidine alkaloid, (-)-antofine has attracted attention because of its extremely potent inhibition of cancer cell growth (Its $IC_50$ values have the low nanomolar range). The frist asymmetric total synthesis of (-)-antofine is described. An important feature of this synthesis is the creation of a stereogenic center by enantioselective alkylation using the phase transfer catalyst (PTC) and ring-closing metathesis (RCM) for pyrrolidine ring construction. This synthesis is efficient to allow the asymmetric preparation of other naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloid.

  • PDF

Viologen-mediated Reductive Transformations of gem-Bromonitro Compounds and $\alpha$-Nitro Ketones by Sodium Dithionite

  • Kwanghee Koh Park;Won Kyou Joung;Sook Young Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 1993
  • Reductive transformations of gem-bromonitro compounds and ${\alpha}$-nitro ketones were carried out conveniently with sodium dithionite by using dioctyl viologen as an electron-transfer catalyst in dichloromethane-water two-phase system:the bromine atom in gem-bromonitro compounds and the nitro group in ${\alpha}$-nitro ketones are replaced by hydrogen.

Synthesis of Eudistomins(I). Preparation of ($\pm$)-N(10)-Benzyloxycarbonyldebromoedudistomin L.

  • Yoon Byung Hee;Lyu Hak Soo;Hahn Jee Hyun;Ahn Chan Mug
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.290-296
    • /
    • 1992
  • Four plausible precursors (21, 22, 24, and 25), just prior to formation of the oxathiazepine ring in eudistomin, were synthesized by the Pictet-Spengler condensation of N-hydroxytryptamine (15) or N-hydroxytryptophan ester (19) with cysteinal derivatives (5 and 10). In the case of the parent compound (21), one of these four precursors, treatment with dihalomethane in the presence of a phase transfer catalyst gave an eudistomin analogue (26) having the oxathiazepine ring in 35-50% yield.

Effect of Space Velocity on the DeNOx Performance in Diesel SCR After-Treatment System (디젤 SCR 후처리장치 내 공간속도가 NOx 저감에 미치는 영향)

  • Wang, Tae-Joong;Baek, Seung-Wook;Kang, Dae-Hwan;Kil, Jung-Ki;Yeo, Gwon-Koo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.49-54
    • /
    • 2006
  • The present study conducted a numerical modeling on the diesel SCR (selective catalytic reduction) system using ammonia as a reductant over vanadium-based catalysts $(V_2O_5-WO_3/TiO_2)$. Transient modeling for ammonia adsorption/desorption on the catalyst surface was firstly carried out, and then the SCR reaction was modeled considering for it. In the current catalytic reaction model, we extended the pure chemical kinetic model based on laboratory-scale powdered-phase catalyst experiments to the chemico-physical one applicable to realistic commercial SCR reactors. To simulate multi-dimensional heat and mass transfer phenomena, the SCR reactor was modeled in two dimensional, axisymmetric domain using porous medium approach. Also, since diesel engines operate in transient mode, the present study employed an unsteady model. In addition, throughout simulations using the developed code, effects of space velocity on the DeNOx performance were investigated.

  • PDF

A Study on the Formation of Octanenitrile as a Precursor for Synthesis of Carboxylic Acid (카르복실산 합성전구체(合成前驅體)로서의 옥탄니트릴의 생성반응(生成反應)에 관(關한) 연구(硏究))

  • Kim, Yong-In;Oh, Yang-Hwan;Kim, Kwang-Sik;Lee, Dong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 1989
  • Using the quarternary ammonium salts as phase transfer catalyst, the nucleophilic substitution reaction of 1-chlorooctane with sodium-cyanide was investigate kinetically with respect to the formation of octanenitrile. The product was analyzed with gas chromatograph, and quantity of octanenitrile was measured. The reaction condition was considered by the effect of the reaction temperature, of the species and the amount of catalyst, of the speed of strirring, and of the concentration of reactants. The reaction was carried out in the first order on the concentration of 1-chlorooctane and sodium cyanide, respectively. The over-all order was 2nd. The activation energies for the nucleophilic substitution reaction of 1-chlorooctane and 1-bromooctane under tetrabutylammonium hydrogen-sulfate were calculated as 2.05 and 10.08kcal/mol, respectively. The effect of various caltalysts was decreased in the order of tetrabutylammonium bromide, terabutylammonium, tetrabutylammonium hydrogensulfate, and tetrabutylammonium iodide. The reaction rate was dependent on the concentration of sodium-cyanide dissolved in the aqueous phase, and the good result was shown when the mol ratio between 1-chlorooctane and sodium cyanide was one per three.

Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator (소각로 SCR 폐탈질 촉매의 피독과 효율재생에 관한 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.259-263
    • /
    • 2008
  • The catalytic activity of the used catalyst, $V_2O_5/TiO_2$, for MSW incinerators was investigated focusing on its regeneration. As the result of the experimental analysis, the NOx removal efficiency difference between the fresh catalyst and used catalyst is about 60% at $260^{\circ}C$ and 1, 2-dichlorobenzen (1, 2-DCB) removal efficiency difference is about 14% at $200^{\circ}C$, in honeycomb test. And the catalysts, both the fresh and used, were characterized by XRD, TGA, and ICP techniques in order to investigate the deactivation. On the basis of the results, it is found that the used catalyst is deactivated by ammonium-sulfates, heavy metals (Pb, As etc.), alkali metals (Ca), and phase transfer of $TiO_2$. Also calcination treatment under nitrogen and air condition was excellent than washing and calcination treatment.