• Title/Summary/Keyword: Phase Shifting ESPI

Search Result 27, Processing Time 0.03 seconds

Vibration Mode Shape Changed by Phase Angle in Vibration Testing Using Phase-Shifting ESPI (위상이동 ESPI를 이용한 진동실험에서 위상각에 따른 진동모드 형상의 변화)

  • 정현철;김경석;양승필;장호섭;박찬주;조영학;김종수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.443-446
    • /
    • 2003
  • The vibration mode shape changed by the phase angle that can be controlled by phase-shifting ESPI system is discussed. For the phase-shifting ESPI experiment the stroboscopic illumination by using AOM(Acousto-Optic Modulator) is needed, and the initial phase angle can be adjusted by the program. The vibration mode shape is changed when the initial phase angle is changed. We examined the vibration mode shape change due to the initial phase angle change at each resonance frequency. Through this study, we found that in the vibration testing using phase-shilling ESPI the vibration mode shape is improved in the quality by adjusting exact phase angle and the error of the quantitative vibration analysis can be reduced.

  • PDF

A Study on Measurement of Micro Weld Deformation by Using PS-ESPI (위상이동 ESPI를 이용한 미세용접변형 측정에 관한 연구)

  • Lee, Gun-Ha;Kim, Ji-Tae;Na, Suck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2535-2540
    • /
    • 2002
  • ESPI is a noncontact, nondestructive and relatively fast inspection method. For these reasons ESPI is being applied as a valuable tool in the nondestructive evaluation of structural components. Phase shifting ESPI is used more effectively than the traditional ESPI because spatial resolution of small object displacements are improved and numerical phase values are obtained for all pixels in the image. Consequently the quantitative measurement of deformation is possible. ESPI fringe patterns are contaminated with high levels of speckle noise. Therefore the phase image is to be smoothed to remove the noise and obtain a better signal-to-noise ratio. In this study, smoothing is done by phase shifting convolution to avoid smoothing errors close to the 2$\pi$ phase ambiguities in the deformation phase image, and median filter is used as a smoothing filter.

Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique (레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보점용접부의 면외 변위측정)

  • 백태현;김명수;차병석;조성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.226-230
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The spekle patterns to be formed with interference phenomena of scattering phenomena measure the out-of-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and the display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-0of-plane displacements of a spot welded canti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded canti-levered plate is quite different from that of the canti-levered plate without spot welding.

  • PDF

Application of ESPI to Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate

  • Baek, Tae-Hyun;Kim, Myung-Soo;Na, Eui-Gyun;Koh, Seung-Kee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.41-46
    • /
    • 2003
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has the advantage of being able to measure surface deformations of engineering components and materials in industrial areas without contact. The speckle patterns formed with interference and scattering phenomena can measure not only the out-of-plane but also the in-plane deformations. Digital image equipment processes the information included in the speckle patterns and displays the consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate, analyzed by 4-step phase shifting method, are close to the theoretical expectation. Similarly, out-of-plane displacements of a spot welded canti-levered plate were also measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded canti-levered plate is quite different from that of the canti-levered plate without spot welding.

ESPI Simulation for the Vibration Modes of the Thin Right-Angled Plate (얇은 직각판의 진동 모드에 대한 ESPI 시뮬레이션)

  • 장순석
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.509-516
    • /
    • 1999
  • The ESPI (Electronic Speckle Pattern Interferometry) algorithm has been simulated to calculate vibrational modes of a thin right-angled STS304 plate. The phase transformation of the reference wave of the ESPI is carried out only one time during vibration in order to clarify ESPI speckle patterns. Two dimensional vibrational modes are calculated from one ESPI pattern before vibration onset and two ESPI patterns during vibrations but with and without the phase transformation. The ESPI harmonic results are compared with those derived from the finite element method (FEM), and they agree very well. Additionally a phase unwrapping algorithm has been newly developed to derive a displacement map from an ESPI phase map.

  • PDF

Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique (레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보 점용접부의 면외 변위측정)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Na, Eui-Gyun;Koh, Seung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.66-72
    • /
    • 2002
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The speckle patterns to be formed with interference and scattering phenomena can measure not only out-of-plane but also in-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and to display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-of-plane displacements of a spot welded cacti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded cacti-levered plate is quite different from that of the canti-levered plate without spot welding.

Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique (마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상)

  • Kim Dong-Iel;Kee Chang-Doo;Huh Yong-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.54-63
    • /
    • 2006
  • Enhancement methods of sensitivity to in-plane strain measurement by micro-ESPI(Electronic Speckle Pattern Interferometry) technique were proposed using TiN and Au thin films. Micro-tensile strain over the micro-tensile specimens, prepared in micro-scale by those films, was measured by micro-tensile loading system and micro-ESPI system developed in this study. The subsequent measurement of in-plane tensile strain in the micro-sized specimens was introduced using the micro-ESPI technique, and the micro-tensile stress-strain curves for these films were determined. To enhance the sensitivity to measurement of in-plane tensile strain, algorithms of the phase estimation by using curve fitting of inter-fringe and the discrete Fourier Transform with object-induced dynamic phase shifting were developed. Using these two algorithms, the micro-tensile strain-stress curves were generated. It is shown that the algorithms for enhancement of the sensitivity suggested in this study make the sensitivity to measurement of the in-plane tensile strain increase.

Comparison of In-Plane Measurement of Phase-Shifting with Time-Average Method (위상이동법과 시간평균법의 면내변위 측정 비교)

  • Kim, Kyoung-Suk;Kim, Dong-Iel;Jung, Hyun-Chul;Kang, Ki-Soo;Lee, Chan-Woo;Yang, Seung-Pil;Jarng, Soon-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.53-58
    • /
    • 1999
  • Even I the Electronic Speckle Pattern Interferometry(ESPI) method that measure the strain of object within wavelength of light is less visibility than Holographic Interferometry(HI) method, the merits of application, convenience and time-save have made the method practical in industry. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement, due to irregular intensity and shake of phase. Recently, in order to solve this problem, phase shifting method have been proposed. In this method, the path of reference light in interference is shifted to make improvement in distinction and precision. But this method includes too many noise, caused by the problem of relationship between object and phase. Therefore, a method to reduce noise muse be introduced. In this paper, least square fitting method is proposed. As results, the phase-map is influenced by precise phase shifting and current of notes and speckle pattern obtained by phase shifting method is improved on the existing method driven from time-average method.

  • PDF

Development Non-contact Laser Measuring System for Vibration Analysis of Structures (구조물의 진동 해석을 위한 비접촉 레이저 계측 시스템 개발)

  • 정현철;김경석;최정석;김성식;강기수;정승택;최태호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.911-914
    • /
    • 2003
  • The non-contact laser measurement system what can be used for the vibration analysis of structures is discussed. There are few systems using laser speckle interferometer for vibration analysis. One of these systems is the Electronic Speckle Pattern Interferometer (ESPI). With ESPI system, one can obtain the vibration mode shape qualitatively and the maximum vibration amplitude quantitatively of the structure at each resonance frequency. In this paper, the phase-shifting ESPI system with stroboscopic illumination for measuring vibration mode shapes is constructed and the operating software is programmed. The results are compared with that of commercial ESPI system.

  • PDF

A Study on Measurement and Analysis of In-Plane Deformations by Using Laser Speckle Interferometry (I) (레이저 스페클 간섭법을 이용한 면내 변형 측정 및 해석에 대한 연구 (I))

  • 강영준;노경완;강형수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.121-129
    • /
    • 1998
  • In-plane ESPI(Electronic Speckle Pattern Interferometry) was devised to measure in-plane deformations and rotation of a specimen with laser in this study. ESPI is a optical measuring method to be able to measure the deformations of engineering components and materials in industrial fields. The conventional measuring methods of surface deformations such as the strain gauge have many demerits because they are contact and point-to-point measuring ones. But that ESPI is noncontact, nondestructive and whole field measuring method can overcome previous disadvantages. We used ESPI which is sensitive to in-plane displacement for measuring in-plane deformations of a disk. And the 4-frame phase shifting method was used for the quantitative analysis. First of all, the system calibration was done due to an in-plane rotation before getting deformations of a disk. Finally we showed good agreement between the experiment results and those of the FEA(Finite Element Analysis).

  • PDF