• Title/Summary/Keyword: Phase Inversion

Search Result 398, Processing Time 0.023 seconds

CMP cross-correlation analysis of multi-channel surface-wave data

  • Hayashi Koichi;Suzuki Haruhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we demonstrate that Common Mid-Point (CMP) cross-correlation gathers of multi-channel and multi-shot surface waves give accurate phase-velocity curves, and enable us to reconstruct two-dimensional (2D) velocity structures with high resolution. Data acquisition for CMP cross-correlation analysis is similar to acquisition for a 2D seismic reflection survey. Data processing seems similar to Common Depth-Point (CDP) analysis of 2D seismic reflection survey data, but differs in that the cross-correlation of the original waveform is calculated before making CMP gathers. Data processing in CMP cross-correlation analysis consists of the following four steps: First, cross-correlations are calculated for every pair of traces in each shot gather. Second, correlation traces having a common mid-point are gathered, and those traces that have equal spacing are stacked in the time domain. The resultant cross-correlation gathers resemble shot gathers and are referred to as CMP cross-correlation gathers. Third, a multi-channel analysis is applied to the CMP cross-correlation gathers for calculating phase velocities of surface waves. Finally, a 2D S-wave velocity profile is reconstructed through non-linear least squares inversion. Analyses of waveform data from numerical modelling and field observations indicate that the new method could greatly improve the accuracy and resolution of subsurface S-velocity structure, compared with conventional surface-wave methods.

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

Optical Transmission Link with Dispersion Map of Antipodal Symmetry and OPC (원점 대칭 분산 맵과 OPC를 가진 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.286-292
    • /
    • 2021
  • Dispersion maps of antipodal symmetric type for improvement of compensation effect in dispersion managed link combined with optical phase conjugation, which can compensate for the distorted wavelength division multiplexed (WDM) signals due to chromatic dispersion and nonlinear Kerr effects of single-mode fiber, were proposed. It was confirmed that the proposed all of antipodal symmetric dispersion maps was more effective to compensate for the distorted WDM channels than the conventional link of uniform type dispersion map. Especially, dispersion maps formed like the inversion of alphabet S were more advantageous as the distorted WDM channels were compensated than dispersion maps formed like alphabet S. It was expected that the variety of optical network topology was more expanded by applying the proposed antipodal symmetric dispersion maps into transmission link.

A Size-Reduced CPW Balun with the Wilkinson Divider Structure Using a Crossing Structure (신호-접지 교차구조를 이용한 소형화된 CPW 월킨슨 분배기 구조의 발룬)

  • Lim Jong-Sik;Yang Hoe-Sung;Kim Dong-Joo;Jeong Yong-Chae;Ahn Dal;Kim Kwang-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.835-841
    • /
    • 2005
  • In this paper, a novel sized-reduced CPW(Coplanar Waveguide) balun is proposed. It has a crossing structure between signal line and ground planes of CPW transmission line for the $180^{\circ}$ phase inversion. The$3{\lambda}/4$ CPW transmission line is reduced to ${\lambda}/4$ in physical length while the electrical length is preserved to $270^{\circ}$ by the $180^{\circ}$ phase inverting structure, while the previous balun by Lim et at. has a long $3{\lambda}/4$ transmission section to from the Wilkinson divider structure having out of phase between output ports. In addition, the measured data which show the crossing structure has the wanted $180^{\circ}$ phase change is presented in this work.

Domain formation and expansion during periodic poling of congruent $LiNbO_3$ using external field (조화용융조성 $LiNbO_3$의 주기적 분극 반전 동안 도메인 생성 및 이동에 관한 연구)

  • Kwon, S.W.;Yang, W.S.;Lee, H.M.;Kim, W.K.;Lee, H.Y.;Yoon, D.H.;Song, Y.S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • When external field was applied to congruent $LiNbO_3$, it was investgated for domain formation and expansion of $LiNbO_3$. The domain wall velocities of 0.5 mm thickness $LiNbO_3$ were 28.70, 16.02 and $5.75{\mu}m/sec$ under poling field of 23.5, 22.0 and 21.0 kV/mm, respectively. As $1 M{\Omega}$ resistor was used in domain inversion system, harmonic domain inversion was not achieved by rapid domain expansion. And 50% duty cycle periodically poled $LiNbO_3$ have been fabricated by charge control using $10 M{\Omega}$ resistor.

A Study of the Comparison of the Shear Wave Velocity Profiles Obtained by a Surface Wave Exploration Method with Borehole Measurements (표면파 탐사 방법을 이용하여 구한 S파 속도와 시추결과의 비교 연구)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.549-557
    • /
    • 2003
  • Surface wave exploration method has many advantages over other conventional exploration methods. Only limited accumulation of the study results has been made due to the recent development of the method. In this study the characteristics of the phase dispersion curves of four sites with different geo-technical properties have been identified. A generalized inversion method was used to obtain the shear wave velocity profiles of the study areas. The shear wave velocity profiles were compared with the columnar sections of the boreholes at the sites. This study shows that the rapid changes in the shear wave velocities are consistent with the changes in the sedimentary or lithologic faces found in the borehole measurements. This implicates that the surface wave exploration method could be used to identify changes in the physical properties of sediments or rocks.

Cardiac MRI (심장 자기공명영상)

  • Lee, Jong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The obstacles for cardiac imaging are motion artifacts due to cardiac motion, respiration, and blood flow, and low signal due to small tissue volume of heart. To overcome these obstacles, fast imaging technique with ECG gating is utilized. Cardiac exam using MRI comprises of morphology, ventricular function, myocardial perfusion, metabolism, and coronary artery morphology. During cardiac morphology evaluation, double and triple inversion recovery techniques are used to depict myocardial fluidity and soft tissue structure such as fat tissue, respectively. By checking the first-pass enhancement of myocardium using contrast-enhanced fast gradient echo technique, myocardial blood flow can be evaluated. In addition, delayed imaging in 10 - 15 minutes can inform myocardial destruction such as chronic myocardial infarction. Ventricular function including regional and global wall motion can be checked by fast gradient echo cine imaging in quantitative way. MRI is acknowledged to be practical for integrated cardiac evaluation technique except coronary angiography. Especially delay imaging is the greatest merit of MRI in myocardial viability evaluation.

  • PDF

Preparation and Characterization of the Asymmetric Microporous Poly(vinylidene fluoride) (PVDF) Blend Membranes with Hydrophilic Surfaces

  • Hwang, Jeong-Eun;JeGal, Jong-Geon
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • To prepare chemically stable asymmetric microporous membranes with a hydrophilic surface, which would be expected to have better antifouling properties, poly(vinylidene fluoride) (PVDF) blend membranes were prepared by the phase inversion process. PVDF mixture solutions in N-methylpyrrolidone (NMP) blended with several polar potential ionic polymers such as polyacrylonitrile (PAN), poly(methylmethacrylate) (PMMA) and poly(N-isopropylacrylamide) (NIPAM) were used for the formation of the PVDF blend membranes. They were then characterized with several analytical methods such as FESEM, FTIR, contact angle measurement, pore size distribution and permeability measurement. Regardless of different polar polymers blended, they all showed a finger-like structure with more hydrophilic surface than the pristine PVDF membrane. For all the PVDF blend membrane, due to the polar potential ionic polymers used, the flux of those was improved. Especially the PVDF blend membrane with NIPAM showed the highest flux among the membranes prepared. Also antifouling property of the PVDF membrane was improved by the use of the polar polymers.

Membrane contactor and Carbon Dioxide Separation

  • 이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.59-101
    • /
    • 2002
  • PVDF is good material for a hollow fiber membrane with high porosity and excellent hydrophobicity. Asymmetric PVDF hollow fiber membranes were prepared by the Loeb-Sourirajan phase inversion method. Asymmetric PVDF hollow fiber membranes could be controlled in pore size and porosity using various additives(LiCl, ZnCl$_2$) and internal coagulants (water, EtOH/water, and DMAc/water mixture). $CO_2$removal efficiency of asymmetric PVDF hollow fiber membranes was 1.2 times high than that of commercialized PP hollow fiber membranes at MEA 5wt% solution. $CO_2$flux of asymmetric PVDF hollow fiber membranes was 2.5 times higher than that of commercialized PP hollow fiber membranes. $CO_2$removal efficiency and absorption rate of asymmetric PVDF hollow fiber membranes were 30 times higher than those of packed column at absorbent $H_2O$. $CO_2$flux of asymmetric PVDF hollow fiber membranes at MEA 5wt% solution was 48 times higher than that of pure water. In the case of MEA 5wt% solution used as an absorbent, the $CO_2$absorption rate and removal efficiency of PVDF hollow fiber membrane were 2.3 times higher than that of a packed column.

  • PDF

Preparation and Characterization of Chemically Stable PVDF-HFP Asymmetric Microfiltration (MF) Membranes

  • Lee, Yeon-Ee;JeGal, Jong-Geon
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • Chemically stable Polyvinylidene fluoride-hexa-fluoropropane (PVDF-HFP) copolymer asymmetric membranes were prepared by the conventional phase inversion process, using Dimethyacetamide (DMAc) as a solvent and water as a non-solvent. To control the pore size and porosity of the PVDF-HFP membranes, tetra-ethoxysilane (TEOS) was used as a pore-forming agent. The prepared membranes were characterized, using several analytical methods such as Fourier Transform Infrared spectroscopy (FTIR), Thermo-gravimetric analyzer (TGA), Field Emission Scanning Electronic Microscopy (FESEM). TEOS turned out to increase porosity and make homogeneous pores on the membranes. Depending on the composition of the dope solutions, the pore size was ranged from 0.1 to 1.0 ${\mu}m$. The flux of the PVDF-HFP membranes prepared by using TEOS as a pore forming agent was increased substantially without much decrease in the rejection. When 15 wt% PVDF-HFP solution was blended with 13 wt% TEOS solution at composition ratio of 70/30 in wt%, the water flux at 2 bars was about 2 $m^3/m^2day$.