DOI QR코드

DOI QR Code

Optical Transmission Link with Dispersion Map of Antipodal Symmetry and OPC

원점 대칭 분산 맵과 OPC를 가진 광전송 링크

  • Lee, Seong-Real (Division of Navigational Information System, Mokpo National Maritime University)
  • 이성렬 (목포해양대학교 항해정보시스템학부)
  • Received : 2021.06.25
  • Accepted : 2021.08.18
  • Published : 2021.08.31

Abstract

Dispersion maps of antipodal symmetric type for improvement of compensation effect in dispersion managed link combined with optical phase conjugation, which can compensate for the distorted wavelength division multiplexed (WDM) signals due to chromatic dispersion and nonlinear Kerr effects of single-mode fiber, were proposed. It was confirmed that the proposed all of antipodal symmetric dispersion maps was more effective to compensate for the distorted WDM channels than the conventional link of uniform type dispersion map. Especially, dispersion maps formed like the inversion of alphabet S were more advantageous as the distorted WDM channels were compensated than dispersion maps formed like alphabet S. It was expected that the variety of optical network topology was more expanded by applying the proposed antipodal symmetric dispersion maps into transmission link.

단일 모드 광섬유의 본질적인 색 분산과 비선형 Kerr 효과에 의해 왜곡되는 파장 분할 다중 신호의 보상을 위한 광 위상 공액기를 갖는 분산 제어 링크에서의 보상 효과 제고를 위한 원점 대칭 구조의 분산 맵을 제안하였다. 제안된 모든 형태의 원점 대칭 분산맵을 갖는 분산 제어 링크는 전통적인 균일 구조의 분산 제어 링크에 비해 파장 분할 다중 채널의 왜곡 보상에 효과적이라는 것을 확인하였다. 특히 알파벳 S자 형태의 분산 맵보다 알파벳 S자를 상하 반전시킨 형태인 분산 맵의 구조를 다양한 형태로 변형시켜도 왜곡 보상에 유리하다는 것을 확인하였다. 제안된 원점 대칭 구조의 분산 맵을 전송 링크에 적용하면 광 네트워크의 토폴로지를 보다 다양하게 구성할 수 있을 것으로 기대된다.

Keywords

References

  1. A. Al-Hayder, et al., "Transmitting audio via fiber optics under nonlinear effects and optimized tuning parameters based on co-simulation of MATLAB and OptiSystemTM," International Journal of Electrical and Computer Engineering, Vol. 10, No. 3, pp. 3253-3260, June 2020. https://doi.org/10.11591/ijece.v10i3.pp3253-3260
  2. S. Waiyapot, S. K. Turitsyn, and V. K. Mezentsev, "Optical regeneration at 40 Gb/s in dispersion-managed transmission lines with in-line synchronous modulators," Journal of Lightwave Technology, Vol. 20, No. 12, pp. 2220-2228, Dec. 2002. https://doi.org/10.1109/JLT.2002.806750
  3. X. Liu, Y. Qiao, and Y. Ji, "Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems," Optics Communications, Vol. 283, pp. 2749-2753, 2010. https://doi.org/10.1016/j.optcom.2010.03.015
  4. M. D. Pelusi, "WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers," IEEE Photonics Technology Letters, Vol. 25, No. 1, pp. 71-74, 2013. https://doi.org/10.1109/LPT.2012.2226440
  5. D. Rafique, J. Zhao, and A. D. Ellis, "Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM mary QAM transmission," Optics Express, Vol. 19, No. 6, pp. 5219-5224, 2011. https://doi.org/10.1364/OE.19.005219
  6. E. Ip and J. M. Kahn, "Compensation of dispersion and nonlinear impairments using digital backpropagation," Journal of Lightwave Technology, Vol. 26, No. 20, pp. 3416-3425, 2008. https://doi.org/10.1109/JLT.2008.927791
  7. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, "Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit," Nature Photonics, Vol. 7, No. 7, pp. 560-568, 2013. https://doi.org/10.1038/nphoton.2013.109
  8. S. L. I. Olsson, B. Corcoran, C. Lundstrom, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, "Phase-sensitive amplified transmission links for improved sensitivity and nonlinearity tolerance," Journal of Lightwave Technology, Vol. 33, No. 3, pp. 710-721, 2015. https://doi.org/10.1109/JLT.2014.2367096
  9. A. Hasegawa, "Soliton-based optical communications: an overview," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, Issue 6, pp. 1161-1172, 2000. https://doi.org/10.1109/2944.902164
  10. H. Hu, R. M. Jopson, A. H. Gnauck, S. Randel, and S. Chandrasekhar, "Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations," Optics Express, Vol. 25, No. 3, pp. 1618-1628, Feb. 2017. https://doi.org/10.1364/OE.25.001618
  11. M. Morshed, L. B. Du, and A. J. Lowery, "Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance," Journal of Lightwave Technology, Vol. 31, No. 1, pp. 58-66, Jan. 2013. https://doi.org/10.1109/JLT.2012.2227942
  12. M. Morshed, L. B. Du, B. Foo, M. D. Pelusi, B. Corcoran, and A. J. Lowery, "Experimental demonstrations of dual polarization CO-OFDM using mid-span spectral inversion for nonlinearity compensation," Optics Express, Vol. 22, No. 9, pp.10455-10466, 2014. https://doi.org/10.1364/OE.22.010455
  13. I. Sackey, F. Da Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, "Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-Gps PDM 16-QAM signal transmission," Journal of Lightwave Technology, Vol. 33, No. 9, pp. 1821-1827, May 2015. https://doi.org/10.1109/JLT.2015.2393152
  14. S. R. Lee, "Dispersion-managed optical links combined with asymmetrical optical phase conjugation for compensating for distorted WDM signals," Journal of Information and Communication Convergence Engineering, Vol. 14, No. 2, pp. 71-77, Jun. 2016. https://doi.org/10.6109/jicce.2016.14.2.071
  15. H. B. Yim and S. Real Lee, "Compensation for the distorted WDM signals through dispersion-managed optical links combined with non-midway optical phase conjugation," International Journal of Control and Automation, Vol. 11, No. 9,, pp.1-10, 2018.
  16. S. R. Lee, "Dispersion-managed optical transmission link adding of non-midway OPC," Journal of Advanced Navigation Technology, Vol. 24, No. 5, pp. 408-414, Oct. 2020. https://doi.org/10.12673/JANT.2020.24.5.408
  17. J. P. Chung and S. R. Lee, "Symmetric-type dispersion maps in dispersion-managed optical link with mid-span spectral inversion," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 20, No. 1, pp. 222-230, Oct. 2020. https://doi.org/10.11591/ijeecs.v20.i1.pp222-230
  18. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Francisco:CA, Academic Press, 2001.
  19. N. Kikuchi and S. Sasaki, "Analytical evaluation technique of self-phase modulation effect on the performance of cascaded optical amplifier systems," Journal of Lightwave Technology, Vol. 13, No. 5, pp. 868-878. 1995. https://doi.org/10.1109/50.387804