• Title/Summary/Keyword: Phase Doppler Particle Analyzer

Search Result 106, Processing Time 0.021 seconds

Atomization Characteristics Experiment of Pintle Type Nozzle by the PDPA (PDPA에 의한 Pintle형 노즐의 미립화 특성실험 -식물유를 중심으로-)

  • 나우정;유병구;정진도
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • A simplified experiment was performed to figure out the atomization characteristics of highly viscous liquid of rice-bran oil by applying ultrasonic energy to improve the atomization of spray droplets. A spray system, an ultrasonic system, and three kinds of pintle-type nozzles(pin-edge angle: 5 , 10 , 15 ) were manufactured. To investigate the effects of ultrasonic energy on the atomization of a highly viscous liquid, a phase doppler particle analyzer was used for the measurement and calculation of spray droplets data. Nozzle opening pressures were chosen of 3 levels, i.e, 10, 13, 16 MPa. As a result, it could be concluded that the ultrasonic energy was effective to improve the spray atomization when applied to the fuel by means of 3 different nozzles because of the effects of the liquid fuel cavitation and relaxation between molecules caused by ultrasonic energy. The improvement rate of the spray atomization by the ultrasonic spray atomization by the ultrasonic spray compared with the conventional spray was about 10% increase in the case of pintle type nozzles. With the increase of pin-edge angles the distribution lines by nozzle opening pressures are declined for both conventional and ultrasonic sprays. This means that the increase of the pin-edge angle improves the atomization of sprays.

  • PDF

Atomization Characteristics in Pneumatic Counterflowing Internal Mixing Nozzle

  • Lee, Sam-Goo;Rho, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1131-1142
    • /
    • 2000
  • In an effort to illustrate the global variation of SMD (Sauter mean diameter, or $D_{32}$) and AMD (Arithmetic mean diameter, or $D_{10}$) at five axial downstream locations (i. e., at Z=30, 50, 80, 120, and 170 mm) under the different experimental conditions, the radial coordinate is normalized by the spray half-width. Experimental data to analyze the atomization characteristics concerning with an internal mixing type have been obtained using a PDPA(Phase Doppler Particle Analyzer). The air injection pressure was varied from 40 kPa to 120 kPa. In this study, counterflowing internal mixing nozzles manufactured at an angle of $15^{\circ}$with axi-symmetric tangential-drilled four holes have been considered. By comparing the results, it is clearly possible to discern the effects of increasing air pressure, suggesting that the disintegration process is enhanced and finer spray droplets can be obtained under higher air assist. The variations in $D_{32}$ are attributed to the characteristic feature of internal mixing nozzle in which the droplets are preferentially ejected downward with strong axial momentum, and dispersed with the larger droplets which are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup by higher shear stresses at farther axial locations. The poor atomization around the centre close to the nozzle exit is attributed to the fact that the relatively lower rates of spherical particles are detected and these drops are not subject to instantaneous breakup in spite of the strong axial momentum. However, substantial increases in SMD from the central part toward the edge of the spray as they go farther downstream are mainly due to the fact that the relative velocity of droplet is too low to cause any subsequent disintegration.

  • PDF

Measurements of Dust Velocity Field around the Ceramic Candle Filter (세라믹 캔들 필터 주위의 분진 속도분포 측정)

  • Ko, Yong-Seo;Chung, Jin-Do;Kim, Seung-Tea
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.30-41
    • /
    • 1999
  • The experimental set-up with a 1m long ceramic candle filter of Schumacher(Germany) was built in this work. The dust velocity field around the filter was measured using PDPA. The effects of dust cake layer and dust inlet position on the dust velocity field were also analyzed. It was found that the filtration velocity decreases as the dust cake builds up on the filter. The filtration velocity largely decreases around the filters near the dust inlet since the dust cake develops fast there. The average dust velocity on the filter due to the pressure difference through the filter was measured to be 0.28m/s. More uniform dust velocity field around the filter was obtained when feeding dust in a lower position of the pressure vessel.

  • PDF

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Effect of injection pressure on the atomization characteristics of a liquid sheet-type swirl injector for Urea-SCR system (Urea-SCR시스템 액막형 선회분사기의 분사압력변화에 따른 무특성에 관한 연구)

  • Kim, Duckjin;Yang, Donguk;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.510-519
    • /
    • 2013
  • In this study, the spray characteristics of a pressure swirl atomizer classified into a liquid sheet-type swirl nozzle for Urea-SCR system were investigated experimentally with the variation of injection pressure. The length to diameter ratio ($l_o/d$) of the nozzle was 3.1, and the swirler was set inside the nozzle tip to give injecting fluid angular momentum. The injection duration of the nozzle was controlled by PWM (pulse width modulation) modes. The development processes of the spray were imaged by a 2-D PIV system, and the change of spray angle was measured. The atomization characteristics, including axial velocity and SMD, were measured using a 2-D PDA system with the injection pressures at room temperature and ambient pressure conditions. As the experimental results, the injection pressure had a significant impact on the spray structure showing a different shape around the spray leading edge, and the smaller SMD was observed with increasing injection pressures, which was similar to that of the previous work.

Experimental Study on the Characteristics of Microbubbles Generated by an Effervescent Tablet in Water (수중 내 발포성 정제로부터 생성된 미세기포 특성에 관한 실험적 연구)

  • Myeong, Jaewon;Maeng, Juyoung;Kim, Young Jun;Cho, Kyungmin;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Sohn, Youngku;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.84-91
    • /
    • 2021
  • Effervescent tablets generate gas bubbles when chemical reaction occurs between water and tablets. Most of previous studies have been focused on pharmaceutical characteristics of tablets. However, for their applications in disinfectants, cleaners, and pesticides, physical characteristics of bubbles released from the effervescent tablets when they are in water are important. In this study, we experimentally investigated the characteristics of microbubbles generated by an effervescent tablet made of sodium bicarbonate and tartaric acid using PDPA and high-speed camera. Microbubbles were generated using different weights of effervescent tablet as well as in different water temperature. The experimental study shows increase in reaction time, bubble concentration and rise velocity as the weight of effervescent tablet increases from 1 to 20 g. The decrease in average bubble diameter was observed when the temperature of water increased from 25 to 45 ℃. Further, reaction time varies inversely with increase in water temperature, while bubble rise velocity is directly proportional to increase in water temperature. Effervescent table continuously generates the bubble with approximately constant diameter (235 ㎛) in the water. However, bubble concentration and bubble rise velocity decreased over time.