• Title/Summary/Keyword: Phase Change Material

Search Result 773, Processing Time 0.034 seconds

Heat Transfer Characteristics of Micro-encapsulated Phase Change Material Slurry (잠열 마이크로캡슐 슬러리의 열전달 특성)

  • Park, Ki-Won;Kim, Myoung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.193-198
    • /
    • 2005
  • The present experiments have been performed for obtaining the melting heat transfer characteristics of micro-encapsulated solid-liquid phase change material and water mixed slurry flow in a circular tube heated with constant wall heat flux. The phase change material having a low melting point was selected for a domestic cooling system in the present study. The governing parameters were found to be latent heat material concentration, heat flux, and the slurry velocity. The experimental results revealed that the increase of tube wall temperature of latent microcapsule slurry was lower than that of water caused by the heat absorption of fusion.

  • PDF

Properties of GST Thin Films for PRAM with Bottom Electrode (PRAM용 GST계 상변화 박막의 하부막에 따른 특성)

  • Jang, Nak-Won;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.205-206
    • /
    • 2005
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. Among the phase change materials, $Ge_2Sb_2Te_5$(GST) is very well known for its high optical contrast in the state of amorphous and crystalline. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the structural properties of GST thin films with bottom electrode were investigated for PRAM. The 100-nm thick GST films were deposited on TiN/Si and TiAlN/Si substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films, we performed x-ray diffraction (XRD) and atomic force microscopy (AFM).

  • PDF

High School Exploration of a Phase Change Material as a Thermal Energy Storage

  • Ardnaree, Kwanhathai;Triampo, Darapond;Yodyingyong, Supan
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.145-150
    • /
    • 2021
  • The present study describes a hands-on experiment to help students understand the concept of phase change or phase transition and its application in a phase change material (PCM). PCMs are substances that have the capability of storing and releasing large amounts of thermal energy. They act as energy storage materials that provide an effective way to save energy by reducing the electricity required for heating and cooling. Lauric acid (LA) was selected as an example of the PCM. Students investigated the temperature change of LA and the temperature (of air) inside the test tube. The differences in the temperatures of the systems helped students understand how PCMs work. A one-group pretest and posttest design was implemented with 34 grade-11 students in science and mathematics. Students' understanding was assessed using a multiple-choice test and a questionnaire. The findings revealed that the designed activity helped students understand the concept of phase change and its application to materials for thermal energy storage.

A Study of Phase-change Properties of Sb-doped Ag/Ge-Se-Te thin films (Sb-doped Ag/Ge-Se-Te 박막의 상변화 특성 연구)

  • Nam, Ki-Hyun;Jeong, Won-Kook;Park, Ju-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.347-347
    • /
    • 2010
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

Phase-Change Properties of the Sb-doped $Ge_1Se_1Te_2$ thin films application for Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb을 첨가한 $Ge_1Se_1Te_2$ 박막의 상변화 특성)

  • Nam, Ki-Hyeon;Choi, Hyuk;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.156-157
    • /
    • 2007
  • For tens of years many advantages of Phase-Change Random Access Memory(PRAM) were introduced. Although the performance improved gradually, there are some portions which must be improved. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material to improve phase transition characteristic. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-Sb.

  • PDF

Material Characteristics of Rapid Hardening Cement Paste Using Phase Change Material for Semi-rigid Pavement (상변화물질을 사용한 반강성 포장용 초속경시멘트 페이스트 재료의 성능평가)

  • Kim, Seung-Su;Lee, Byung-Jae;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2016
  • A study to apply phase change material(PCM) to rapid hardening cement paste forming semi-rigid pavement was carried out. The characteristics fresh and hardened paste were evaluated through the experiment for a total of 6 mixtures according to the cement type and the substitution of phase change material for acrylate. The fluidity by substituting phase change material for acrylate satisfied the target flow time of 10 to 13 seconds. In case of setting time, it was possible to secure the performance of rapid hardening cement by substituting phase change material, and if the substitution ratio over 60%, the initial set occurred 1 to 2 minutes faster than other mixtures. In case of compressive strength and bond strength, it showed similar strength characteristics with the plain mixture, and it satisfied both the target compressive and bonding strength of 36MPa and 2MPa. The mixture substituting phase change material showed higher resistance to chloride ion penetration than the mixture only using acrylate and the OPC level was insufficient. From the results of physical and mechanical performances of semi-rigid pavement cement paste, the phase change material substitution rate of 20% was effective in the range of this study.

Combined Thermal Radiation with Turbulent Convection Conjugate PCM Model (난류 대류를 도입한 고온 축열 시스템 모델의 열복사 전달에 관한 연구)

  • Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.556-565
    • /
    • 1995
  • The physical model of interest is based upon the concentric cylinder, where the outside cylinder is filled with optically thick and high temperature phase change material(PCM). The fluid is flowing through the inside cylinder to transfer the appropriate energy. The fluid is flowing through the inside cylinder to transfer the appropriate energy. The governing equations for the phase change material including internal thermal radiation and for the turbulent transfer fluid have been employed and numerically solved. The optically thick phase change justifies the P-l spherical harmonics approximation, which is believed to be appropriate choice particularly for the much coupled problem like in this study. The solid/liquid interface, temperature distribution within the PCM and the heat flux from the PCM to the transfer fluid have been obtained and compared with those of laminar transfer fluid. The numerical results show that the turbulent transfer fluid accelerates the solid/liquid interface and results in the increase of heat transfer rate from the PCM. The internal thermal radiation within the PCM, however, does not always playa role to increase the heat transfer rate throughout the inside cylinder. It is believed that the combined heat flux has been picked up more in the inflowing area than in the pure conductive phase change material.

  • PDF

Experimental Study on Accelerating Phase Change Heat Transfer (상변화 물질의 상변이 촉진에 관한 실험적 연구)

  • 박설현;오율권;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Solid-liquid phase change (i.e. melting or solidification) occurs in a number of situations of practical interest. Some common examples include the melting of edible oil, metallurgical process such as casting and welding, and materials science applications such as crystal growth. Therefore, due to the practical importance of the subject, there have been a large number of experimental and numerical studies of problems involving phase change during the past few decades. Also, this study presented the effective way to enhance phase change heat transfer.

A Study on the Effects of the Cold Heat Storage with Salt Water on the Performance of a Kimchi Refrigerator (염수 축냉이 김치냉장고의 성능에 미치는 영향)

  • Gil, Bog-Im;Choi, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.891-896
    • /
    • 2010
  • The objective of the present study is to reveal the effects of a phase-change material on the performance of a Kimchi refrigerator. Two-percent salt water, of which melting temperature was $-1.1^{\circ}C$, was used for the phase-change material. The salt water was packed in silicon cases and inserted between Kimchi container and the copper pipe of the evaporator. The maximum and minimum temperatures of the inner wall of the Kimchi container without salt-water pack were $-0.2^{\circ}C$ and $-8.9^{\circ}C$, which were remarkably improved by using the salt-water packs, resulting $-0.5^{\circ}C$ and$ -1.9^{\circ}C$. This shows a useful application of using phase-change materials for accurate temperature controls.

A Study of Heat Storage System with Phase Change Material - Inward Melting in a Horizontal Cylinder (상변화 물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내의 내향용융 열전달 실험 -)

  • Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • Heat transfer phenomena during inward melting process of the phase change material were studied experimentally. N-docosane paraffin [$C_{22}H_{46}$] is used for phase change material and its melting temperature is $42.5^{\circ}C$. Experiments were performed for melting of an initially no-sub cooled or subcooled solid in a horizontal cylinder, in order to compare and investigate the radial temperature distribution, ratio of melting and melted mass, various energy components stored from the cylinder wall, figure of the melting front in the horizontal cylinder. The solid-liquid interface motion during phase change was recorded photographically. The experimental results reaffirmed the dominant role played by the conduction at early stage, by the natural convection at longer time during inward melting in the horizontal cylinder. Ratio of melting and melted mass are more influenced by wall temperature, rather than by the initial temperature of solid. The latent energy is the largest contributor to the total stored energy.

  • PDF