• Title/Summary/Keyword: Pharmacokinetic/pharmacodynamic modeling

Search Result 16, Processing Time 0.02 seconds

Pharmacokinetic and Pharmacodynamic Modeling of Levodopa in Parkinson Disease

  • Holford, Nick H.
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.220-222
    • /
    • 2002
  • The concentration effect relationship (pharmacokinetic pharmacodynamic model, PKPD) of drugs used for Parkinson's disease is complex. The benefits and adverse effects of drug treatment have to be considered in terms of short term and long term effects. Acute effects, observed over hours and days, reflect symptomatic benefit while chronic effects, observed over months and years, also reveal influences on the progress of the disease. (omitted)

  • PDF

Pharmacokinetic-Pharmacodynamic Modeling of a Direct Thrombin Inhibitor, Argatroban, in Rats

  • Park, Eun-Hye;Shin, Beom-Soo;Yun, Chi-Ho;Lee, Mann-Hyung;Yoo, Sun-Dong
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.373-379
    • /
    • 2009
  • This study was conducted to develop a pharmacokinetic-pharmacodynamic (PK/PD) model of a direct thrombin inhibitor, argatroban to predict the concentration-effect profiles in rats. Argatroban was i.v. injected to rats at 0. 2, 0.8 and 3.2 mg/kg doses (n = 4-5 per dose), and plasma drug levels were determined by a validated LC/MS/MS assay. The pharmacokinetics of argatroban was linear over the i.v. dose range studied. The thrombin time (TT) and the activated partial thromboplastin time (aPTT) were measured in rat plasma and they were found to linearly increase with increasing the dose. A 2-compartment pharmacokinetic model linked with an indirect response pharmacodynamic model was successfully utilized to evaluate the drug concentration-response relationship.

Pharmacokinetic and Pharmacodynamic Modeling of a Proton Pump Inhibitor

  • Bae, Kyun-Seop;Jang, In-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.223-224
    • /
    • 2002
  • Pharmacokinetic (PK) and pharmacodynamic (PD) study of a new reversible proton pump inhibitor (YH1885, Yuhan Pharmaceutical Co.) was done as a phase 1 clinical trial in Seoul national University Hospital Clinical trialcenter. Single dose of 60, 100, 150, 200, and 300mg were administered to total 20 healthy subjects under fasting state. Six subjects were given 100 mg after food and 12 subjects were given multiple doses of 150 and 300 mg every day for 7 days under fasting state. (omitted)

  • PDF

Mechanistic Pharmacokinetic/pharmacodynamic Modeling in Isolated Perfused Organs and at the Whole-Body Level

  • Weiss, Michael
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.218-219
    • /
    • 2002
  • In the past, the development of pharmacokinetic/pharmacodynamic (PK/PD) models for quantitating the time course of drug responses was mainly based on two types of models, the empirical effect compartment model that simply accounts for the delay between effect and plasma concentration (hysteresis) and the mechanism-based so-called indirect response model. The first approach traces back to a paper by Segre (1) and its application was popularized by Holford and Sheiner (2); indirect response models were introduced by Jusko's group (3). (omitted)

  • PDF

Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver-titanium implant system

  • Tan, Zhuo;Orndorff, Paul E.;Shirwaiker, Rohan A.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.127-141
    • /
    • 2015
  • Silver-based systems activated by low intensity direct current continue to be investigated as an alternative antimicrobial for infection prophylaxis and treatment. However there has been limited research on the quantitative characterization of the antimicrobial efficacy of such systems. The objective of this study was to develop a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model providing the quantitative relationship between the critical system parameters and the degree of antimicrobial efficacy. First, time-kill curves were experimentally established for a strain of Staphylococcus aureus in a nutrientrich fluid environment over 48 hours. Based on these curves, a modified PK/PD model was developed with two components: a growing silver-susceptible bacterial population and a depreciating bactericidal process. The test of goodness-of-fit showed that the model was robust and had good predictability ($R^2>0.7$). The model demonstrated that the current intensity was positively correlated to the initial killing rate and the bactericidal fatigue rate of the system while the anode surface area was negatively correlated to the fatigue rate. The model also allowed the determination of the effective range of these two parameters within which the system has significant antimicrobial efficacy. In conclusion, the modified PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to the electrically activated silver-titanium implant system. This modeling approach as well as the model itself can also potentially contribute to the development of optimal design strategies for other similar antimicrobial systems.

The Role of PK/PD Modeling and Simulation in Model-based New Drug Development (모델 기반학적 신약개발에서 약동/약력학 모델링 및 시뮬레이션의 역할)

  • Yun, Hwi-Yeol;Baek, In-Hwan;Seo, Jeong-Won;Bae, Kyung-Jin;Lee, Mann-Hyung;Kang, Won-Ku;Kwon, Kwang-Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.18 no.2
    • /
    • pp.84-96
    • /
    • 2008
  • In the recent, pharmacokinetic (PK)/pharmacodynamic (PD) modeling has appeared as a critical path tools in new drug development to optimize drug efficacy and safety. PK/PD modeling is the mathematical approaches of the relationships between PK and PD. This approach in new drug development can be estimated inaccessible PK and PD parameters, evaluated competing hypothesis, and predicted the response under new conditions. Additionally, PK/PD modeling provides the information about systemic conditions for understanding the pharmacology and biology. These advantages of PK/PD model development are to provide the early decision-making information in new drug development process, and to improve the prediction power for the success of clinical trials. The purpose of this review article is to summarize the PK/PD modeling process, and to provide the theoretical and practical information about widely used PK/PD models. This review also provides model schemes and the differential equations for the development of PK/PD model.

  • PDF

Pharmacodynamic Modeling of Vincristine in Lymphoma Patients (림프종 환자에서 회귀모형을 이용한 vincristine의 약물 용량 예측 인자 및 부작용 모델 연구)

  • Seo, Jeong-Won;Kim, Dong-Hyun;Yun, Jin-Sang;Kim, Seon-Hwa;Choi, Bo-Yoon;Oh, Jung-Mi;Kwon, Kwang-Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.145-155
    • /
    • 2011
  • The objective of this study was to determine whether any pretreatment parameters were associated with pharmacological effect or toxicity parameters after vincristine administration and to describe a mathematical model, which explains the interpatient pharmacodynamic variability. The relationship between patient characteristics and vincristine dose and hematological toxicity were evaluated. 68 pediatric and adolescence patients and 107 adults with acute lymphoblastic leukemia were treated with vincristine $1.5mg/m^2/day$ IV and other anticancer drugs as scheduled. Complete blood counts and other blood test results were obtained. The input variables were age, gender, weight, lean body weight (LBW), height, body surface area, vincristine dose and total vincristine dose. The outcome measures were nadir values (white blood cells, absolute neutrophil counts, hemoglobin, and platelets); the absolute decrease, relative decrease, and survival fraction of blood cells. Polynomial regression analysis was carried out to determine the other significant covariates. The variability of $WBC_{nadir}$ was modeled with good precision and accuracy with a two-covariate model. This model should be validated and improved on with further clinical data. We believe that such pharmacodynamic modeling should be explored further to determine its performance and clinical relevance compared with modeling using pharmacokinetic parameter.

Physiologically Based Pharmacokinetic (PBPK) Modeling in Neurotoxicology

  • Kim, Chung-Sim
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.135-136
    • /
    • 1995
  • Resent advances in computer technology have introduced a sophisticated capability for computing the biological fate of toxicants in a biological system. This methodology, which has drastically altered risk assessment skill in toxicology, is designed using all the mechanistic information, and all claim better accuracy with extrapolating capability Iron animal to people than conventional pharmacokinetic methods. Biologically based mathematical models in which the specific mechanistic steps governing tissue disposition(pharmacokinetics) and toxic action (pharmacodynamics) of chemicals are constructed in quantitative terms by a set of equations loading to prediction of the outcome of specific toxicological experiments by computer simulation. pharmacokinetic and pharmacodynamic models are useful in risk assessment because their mechanistic biological basis permits the high-to-low dose, route to route and interspecies extrapolation of the tissue disposition and toxic action of chemicals.

  • PDF