• Title/Summary/Keyword: Phantoms, imaging

Search Result 116, Processing Time 0.024 seconds

Potential impact of metal crowns at varying distances from a carious lesion on its detection on cone-beam computed tomography scans with several protocols

  • Matheus Barros-Costa;Eduarda Helena Leandro Nascimento;Iago Filipe Correia-Dantas;Matheus L. Oliveira;Deborah Queiroz Freitas
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: This study evaluated the impact of artifacts generated by metal crowns on the detection of proximal caries lesions in teeth at various distances using cone-beam computed tomography (CBCT). Additionally, the diagnostic impacts of tube current and metal artifact reduction (MAR) were investigated. Materials and Methods: Thirty teeth were arranged within 10 phantoms, each containing 1 first premolar, 1 second premolar, and 1 second molar. A sound first molar (for the control group) or a tooth with a metal crown was placed. Of the 60 proximal surfaces evaluated, 15 were sound and 45 exhibited enamel caries. CBCT scans were acquired using an OP300 Maxio unit (Instrumentarium, Tuusula, Finland), while varying the tube current (4, 8, or 12.5 mA) and enabling or disabling MAR. Five observers assessed mesial and distal surfaces using a 5-point scale. Multi-way analysis of variance was employed for data comparison, with P<0.05 indicating statistical significance. Results: The area under the curve (AUC) varied from 0.40 to 0.60 (sensitivity: 0.28-0.45, specificity: 0.44-0.80). The diagnostic accuracy was not significantly affected by the presence of a metal crown, milliamperage, or MAR(P>0.05). However, the overall AUC and specificity were significantly lower for surfaces near a crown (P<0.05). Conclusion: CBCT-based caries detection was not influenced by the presence of a metal crown, variations in milliamperage, or MAR activation. However, the diagnostic accuracy was low and was further diminished for surfaces near a crown. Consequently, CBCT is not recommended for the detection of incipient caries lesions.

Comparative Analysis of Quantitative Signal Intensity between 1.0 mol and 0.5 mol MR Contrast Agent (1.0 mol 과 0.5 mol MR조영제의 정량적 신호강도 비교분석)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Nam, Ki Chang;Jang, Geun Yeong;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.134-141
    • /
    • 2015
  • The purpose on this research is quantitatively comparing and analyzing signal intensity of 1.0mol and 0.5mol contrast agent. For this study, two MR phantoms were produced. One of them is used with 1.0mol Gadobutrol. The other is used with 0.5mol Gadoteridol. These two phantoms respectively have been scanned by SE T1 sequence which is used to get a general contrast-enhanced image in 1.5T MRI and 3D FLASH sequence which is used as enhanced angio MRI. Signal intensity was measured by scanned images as per contrast agent dilution ratio. The results were as follow: RSP(Reaction Starting Point) of the two sequences(2D SE, 3D FLASH) was respectively 6.0%, 60.0% in 0.5mol contrast and 2.0%, 20.0% in 1.0mol contrast, which means in 0.5mol contrast, RSP was formed faster than the one in 1.0mol contrast. MPSI was respectively 1358.8[a.u], 1573[a.u] in 0.5mol contrast and 1374[a.u], 1642.4[a.u] in 1.0mol contrast, which means 0.5mol contrast's MPP (0.4%, 10.0%) was formed faster than 1.0mol contrast's MPP (0.16%, 1.8%). Lastly, RA as per contrast agent dilution ratio was 27.4%, 11.8% wider in 0.5mol contrast(20747.4[a.u], 23204.6[a.u]) than in 1.0mol contrast(12691.9[a.u], 20747.4[a.u]). According to the study, we are able to assure that signal reaction time of 1.0mol contrast is slower than the one of 0.5mol contrast in contrast-enhanced MRI at two different sequences(2D SE, 3D FLASH). Furthermore, owing to the fact that there are not any signal intensity differences between 1.0mol and 0.5mol contrast, it is not true that high concentration gadolinium MR contrast agent does not always mean high signal intensity in MRI.

Development of $^1H-^{31}P$ Animal RF Coil for pH Measurement Using a Clinical MR Scanner (임상용 MR에서 pH 측정을 위한 동물 실험용 $^1H-^{31}P$ RF 코일 개발)

  • Kim, Eun Ju;Kim, Daehong;Lee, Sangwoo;Heo, Dan;Lee, Young Han;Suh, Jin-Suck
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Purpose : To establish a pH measurement system for a mouse tumor study using a clinical scanner, to develop the $^1H$ and 31P radio frequency (RF) coil system and to test pH accuracy with phantoms. Materials and Methods: The $^1H$ and the $^{31}P$ surface coils were designed to acquire signals from mouse tumors. Two coils were positioned orthogonally for geometric decoupling. The pH values of various pH phantoms were calculated using the $^1H$ decoupled $^{31}P$ MR spectrum with the Henderson-Hasselbalch equation. The calculated pH value was compared to that of a pH meter. Results: The mutual coil coupling was shown in a standard $S_{12}$. Coil coupling ($S_{12}$) were -73.0 and -62.3 dB respectively. The signal-to-noise ratio (SNR) obtained from the homogeneous phantom $^1H$ image was greater than 300. The high resolution in vivo mice images were acquired using a $^{31}P$-decoupled $^1H$ coil. The pH values calculated from the $^1H$-decoupled $^{31}P$ spectrum correlated well with the values measured by pH meter ($R^2$=0.97). Conclusion: Accurate pH values can be acquired using a $^1H$-decoupled $^{31}P$ RF coil with a clinical scanner. This two-surface coil system could be applied to other nuclear MRS or MRI.

Contrast reference values in panoramic radiographic images using an arch-form phantom stand

  • Shin, Jae-Myung;Lee, Chena;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.46 no.3
    • /
    • pp.203-210
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate appropriate contrast reference values (CRVs) by comparing the contrast in phantom and clinical images. Materials and Methods: Phantom contrast was measured using two methods: (1) counting the number of visible pits of different depths in an aluminum plate, and (2) obtaining the contrast-to-noise ratio (CNR) for 5 tissue-equivalent materials (porcelain, aluminum, polytetrafluoroethylene [PTFE], polyoxymethylene [POM], and polymethylmethacrylate [PMMA]). Four panoramic radiographs of the contrast phantom, embedded in the 4 different regions of the arch-form stand, and 1 real skull phantom image were obtained, post-processed, and compared. The clinical image quality evaluation chart was used to obtain the cut-off values of the phantom CRV corresponding to the criterion of being adequate for diagnosis. Results: The CRVs were obtained using 4 aluminum pits in the incisor and premolar region, 5 aluminum pits in the molar region, and 2 aluminum pits in the temporomandibular joint (TMJ) region. The CRVs obtained based on the CNR measured in the anterior region were: porcelain, 13.95; aluminum, 9.68; PTFE, 6.71; and POM, 1.79. The corresponding values in the premolar region were: porcelain, 14.22; aluminum, 8.82; PTFE, 5.95; and POM, 2.30. In the molar region, the following values were obtained: porcelain, 7.40; aluminum, 3.68; PTFE, 1.27; and POM, - 0.18. The CRVs for the TMJ region were: porcelain, 3.60; aluminum, 2.04; PTFE, 0.48; and POM, - 0.43. Conclusion: CRVs were determined for each part of the jaw using the CNR value and the number of pits observed in phantom images.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

Material Discrimination Using X-Ray and Neutron

  • Jaehyun Lee;Jinhyung Park;Jae Yeon Park;Moonsik Chae;Jungho Mun;Jong Hyun Jung
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.167-174
    • /
    • 2023
  • Background: A nondestructive test is commonly used to inspect the surface defects and internal structure of an object without any physical damage. X-rays generated from an electron accelerator or a tube are one of the methods used for nondestructive testing. The high penetration of X-rays through materials with low atomic numbers makes it difficult to discriminate between these materials using X-ray imaging. The interaction characteristics of neutrons with materials can supplement the limitations of X-ray imaging in material discrimination. Materials and Methods: The radiation image acquisition process for air-cargo security inspection equipment using X-rays and neutrons was simulated using a GEometry ANd Tracking (Geant4) simulation toolkit. Radiation images of phantoms composed of 13 materials were obtained, and the R-value, representing the attenuation ratio of neutrons and gamma rays in a material, was calculated from these images. Results and Discussion: The R-values were calculated from the simulated X-ray and neutron images for each phantom and compared with those obtained in the experiments. The R-values obtained from the experiments were higher than those obtained from the simulations. The difference can be due to the following two causes. The first reason is that there are various facilities or equipment in the experimental environment that scatter neutrons, unlike the simulation. The other is the difference in the neutron signal processing. In the simulation, the neutron signal is the sum of the number of neutrons entering the detector. However, in the experiment, the neutron signal was obtained by superimposing the intensities of the neutron signals. Neutron detectors also detect gamma rays, and the neutron signal cannot be clearly distinguished in the process of separating the two types of radiation. Despite these differences, the two results showed similar trends and the viability of using simulation-based radiation images, particularly in the field of security screening. With further research, the simulation-based radiation images can replace ones from experiments and be used in the related fields. Conclusion: The Korea Atomic Energy Research Institute has developed air-cargo security inspection equipment using neutrons and X-rays. Using this equipment, radiation images and R-values for various materials were obtained. The equipment was reconstructed, and the R-values were obtained for 13 materials using the Geant4 simulation toolkit. The R-values calculated by experiment and simulation show similar trends. Therefore, we confirmed the feasibility of using the simulation-based radiation image.

Multi-Component Relaxation Study of Human Brain Using Relaxographic Analysis (Relaxographic 분석법을 이용한 뇌의 다중 자기이완특성에 관한 연구)

  • Yongmin Chang;Bong Soo Han;Bong Seok Kang;Kyungnyeo Jeon;Kyungsoo Bae;Yong-Sun Kim;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.120-128
    • /
    • 2002
  • Purpose : To demonstrate that the relaxographic method provides additional information such as the distribution of relaxation times and water content which are poentially applicable to clinical medicine. Materials and Methods : First, the computer simulation was performed with the generated relaxation data to verify the accuracy and reliabilility of the relaxographic method (CONTINI). Secondly, in or der to see how well the CONTIN quantifies and resolves the two different ${T_1}$ environments, we calculated the oil to water peak area ratios and identified peak positions of ${T_1}-distribution$ curve of the phantom solutions, which consist of four centrifugal tubes (10 ml) filled with the compounds of 0, 10, 20, 30% of corn oil and distilled water, using CONTIN. Finally, inversion recovery MR images for a volunteer are acquired for each TI ranged from 40 to 1160 msec with TR/TE=2200/20 msec. From the 3 different ROIs (GM, WM, CSF), CONTIN analysis was performed to obtain the ${T_1}$-distribution curves, which gave peak positions and peak area of each ROI location. Results : The simulation result shows that the errors of peak positions were less in the higher peak (centered ${T_1}=600$ msec) than in the lower peak (centered ${T_1}=150$ msec) for all SNR but the errors of peak areas were larger in the higher peak than in the lower peak. The CONTIN analysis of the measured relaxation data of phantoms revealed two peaks between 20 and 60 msec and between 500 and 700 msec. The analysis gives the peak area ratio as oil 10%: oil 20%: oil 30% = 1:1.3:1.9, which is different from the exact ratio, 1:2:3. For human brain, in ROI 3 (CSF), only one component of -distributions was observed whereas in ROI 1(GM) and in ROI 2 (WM) we observed two components of ${T_1}-distribution$. For the WM and CSF there was great agreement between the observed ${T_1}-relaxation$ times and the reported values. Conclusion : we demonstrated that the relaxographic method provided additional information such as the distribution of relaxation times and water content, which were not available in the routine relaxometry and ${T_1}/{T_2}$ mapping techniques. In addition, these additional information provided by relaxographic analysis may have clinical importance.

  • PDF

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

Calculation of Renal Depth by Conjugate-View Method Using Dual-head Gamma Camera (이중 헤드 감마 카메라를 이용한 Conjugate-View 계수법에 의한 신장 깊이 도출)

  • Kim, Hyun-Mi;Suh, Tae-Suk;Choe, Bo-Young;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo;Lee, Hyoung-Koo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.6
    • /
    • pp.378-388
    • /
    • 2001
  • Purpose: In this study, we developed a new method for the determination of renal depth with anterior and posterior renal scintigrams in a dual-head gamma camera, considering the attenuation factor $e^{-{\mu}x}$ of the conjugate-view method. Material and Method: We developed abdomen and kidney phantoms to perform experiments using Technetium-99m dimercaptosuccinic acid ($^{99m}Tc$-DMSA). The phantom images were obtained by dual-head gamma camera equipped with low-energy, high-resolution, parallel-hole collimators (ICONf, Siemens). The equation was derived from the linear integration of omission ${\gamma}$-ray considering attenuation from the posterior abdomen to the anterior abdomen phantom surface. The program for measurement was developed by Microsoft Visual C++ 6.0. Results : Renal depths of the phantoms were derived from the derived equations and compared with the exact geometrical values. Differences between the measured and the calculated values were the range of 0.1 to 0.7 cm ($0.029{\pm}0.15cm,\;mean{\pm}S.D.$). Conclusion: The present study showed that the use of the derived equations for renal depth measurements, combined with quantitative planar imaging using dual-head gamma camera, could provide more accurate results for individual variation than the conventional method.

  • PDF

Making Human Phantom for X-ray Practice with 3D Printing (3D 프린팅을 활용한 일반 X선 촬영 실습용 인체 팬텀 제작)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • General phantom for practical X-ray photography Practical phantom is an indispensable textbook for radiology, but it is difficult for existing commercially available phantom to be equipped with various kinds of phantom because it is an expensive import. Using 3D printing technology, I would like to make the general phantom for practical X-ray photography less expensive and easier. We would like to use a skeleton model that was produced based on CT image data using a 3D printer of FDM (Fused Deposition Modeling) method as a phantom for general X-ray imaging. 3D slicer 4.7.0 program is used to convert CT DICOM image data into STL file, convert it to G-code conversion process, output it to 3D printer, and create skeleton model. The phantom of the completed phantom was photographed by X - ray and CT, and compared with actual medical images and phantoms on the market, there was a detailed difference between actual medical images and bone density, but it could be utilized as a practical phantom. 3D phonemes that can be used for general X-ray practice can be manufactured at low cost by utilizing 3D printers which are low cost and distributed and free 3D slicer program for research. According to the future diversification and research of 3D printing technology, it will be possible to apply to various fields such as health education and medical service.