• Title/Summary/Keyword: Phantom problem

Search Result 73, Processing Time 0.023 seconds

Evaluation of Selective Saturation and Refocousing Pulses in Chemical Shift NMR Imaging

  • Shin, Yong-Jin;Park, Young-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.64-73
    • /
    • 2000
  • There are several methods to achieve selective NMR image of differing chemical species with the three most popular methods of Dixon's, CHESS, and SECSI. A major problem common to all chemical shift imaging methods is the uniformity of the static magnetic field and distortions introduced when RF coils are loaded with a conducting specimen. Without magnetic field shimming, these methods cannot be used to acquire selectively image protons in fat and water which are separated by approximately 3.0ppm. Experiments with a phantom, with linewidths of 2.5 to 3.5ppm, were quantitatively evaluated for the three methods and a new chemical shift imaging method. In this study the new chemical shift imaging method (modified CHESS+SECSI technique) which included a selective saturation and refocusing pulse, was developed to determine the ratios of water and fat in different samples.

  • PDF

A Model of a Simplified Mammography Geometry for Breast Cancer Imaging with EIT (전기임피던스 단층촬영법을 위한 단순화된 매모그래피 구조의 모델)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.221-226
    • /
    • 2006
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present "gold standard" for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. This paper presents a forward model of a simplified mammography geometry for EIT imaging. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and Validated by experiment using a phantom tank.

  • PDF

Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study (폐질환의 SPECT와 CT 융합영상의 유용성: 초기연구)

  • Park, Hoon-Hee;Kim, Tae-Hyung;Shin, Ji-Yun;Lee, Tae-Soo;Lyu, Kwang-Yeul
    • Journal of radiological science and technology
    • /
    • v.35 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing.However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: $65.3{\pm}12.7$). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

Median Modified Wiener Filter for Noise Reduction in Computed Tomographic Image using Simulated Male Adult Human Phantom (시뮬레이션된 성인 남성 인체모형 팬텀을 이용한 전산화단층촬영 에서의 노이즈 제거를 위한 Median Modified Wiener 필터)

  • Ju, Sunguk;An, Byungheon;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Computed tomography (CT) has the problem of having more radiation exposure compared to other radiographic apparatus. There is a low-dose imaging technique for reducing exposure, but it has a disadvantage of increasing noise in the image. To compensate for this, various noise reduction algorithms have been developed that improve image quality while reducing the exposure dose of patients, of which the median modified Wiener filter (MMWF) algorithm that can be effectively applied to CT devices with excellent time resolution has been presented. The purpose of this study is to optimize the mask size of MMWF algorithm and to see the excellence of noise reduction of MMWF algorithm for existing algorithms. After applying the MMWF algorithm with each mask sizes set from the MASH phantom abdominal images acquired using the MATLAB program, which includes Gaussian noise added, and compared the values of root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient correlation (CC), and universal image quality index (UQI). The results showed that RMSE value was the lowest and PSNR, CC and UQI values were the highest in the 5 x 5 mask size. In addition, comparing Gaussian filter, median filter, Wiener filter, and MMWF with RMSE, PSNR, CC, and UQI by applying the optimized mask size. As a result, the most improved RMSE, PSNR, CC, and UQI values were showed in MMWF algorithms.

The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method (Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method)

  • Choi, Jong-Sook;Jung, Woo-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2009
  • Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with $^{99m}Tc$. We obtained images by LEAP and LEHR collimators (diamox image) and after 6 hours (the half life of $^{99m}Tc$: 6 hours), we use obtained second image (basal image) by same method. Also, we acquired SNR and ratio of white matters/gray matters of each basal image and subtracted image. (2) The evaluation of patient's image: We quantitatively analyzed patients who were examined by LEAP collimators then was classified as a normal group and who were examined by LEHR collimators then was classified as a normal group from 2008. 05 to 2009. 01. We evaluate the results from phantom by substituting factors. We used one-day protocol and injected $^{99m}Tc$-ECD 925 MBq at both basal image acquisition and diamox image acquisition. Results: (1) The evaluation of phantom: After measuring counts from each detector, at basal image 41~46 kcount, stress image 79~90 kcount, subtraction image 40~47 kcount were detected. LEAP was about 102~113 kcount at basal image, 188~210 kcount at stress image and 94~103 at subtraction image kcount were detected. The SNR of LEHR subtraction image was decreased than LEHR basal image about 37%, the SNR of LEAP subtraction image was decreased than LEAP basal image about 17%. The ratio of gray matter versus white matter is 2.2:1 at LEHR basal image and 1.9:1 at subtraction, and at LEAP basal image was 2.4:1 and subtraction image was 2:1. (2) The evaluation of patient's image: the counts acquired by LEHR collimators are about 40~60 kcounts at basal image, and 80~100 kcount at stress image. It was proper to set FWHM as 7 mm at basal and stress image and 11mm at subtraction image. LEAP was about 80~100 kcount at basal image and 180~200 kcount at stress image. LEAP images could reduce blurring by setting FWHM as 5 mm at basal and stress images and 7 mm at subtraction image. At basal and stress image, LEHR image was superior than LEAP image. But in case of subtraction image like a phantom experiment, it showed rough image because SNR of LEHR image was decreased. On the other hand, in case of subtraction LEAP image was better than LEHR image in SNR and sensitivity. In all LEHR and LEAP collimator images, proper subset and iteration frequency was 8 times. Conclusions: We could archive more clear and high SNR subtraction image by using proper filter with LEAP collimator. In case of applying one day protocol and reconstructing by Flash 3D, we could consider application of LEAP collimator to acquire better subtraction image.

  • PDF

Research on the Reduction of Exposure Dose of a Patient Having a PET/CT Exam (PET/CT 검사 환자의 피폭선량 경감을 위한 연구)

  • Kim, Bong-Su;Pyo, Sung-Jai;Cho, Yong-Gyi;Shin, Chai-Ho;Cho, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2009
  • Purpose: As the number of patients has increased since the installation of a PET/CT, we are now examining about 2500-3000 annually. We have realized that if we properly adjust a pitch under the same condition of a CT during a PET/CT exam, radiation quantity that reaches the patient can change. In order to reduce the exposure dose of a patient, the research examines a method of reducing the exposure dose of a patient by controlling the pitch during a PET/CT exam, viewing whether the adjustment of the pitch influences CT image and PET SUV. Methods: The equipment used is a Biograph Positron Emission Tomography (PET) Scanner (CT type: TRCT-240-130 (WCT-240-130)) of Siemens company. For the evaluation of exposure dose of a patient, we measured radiation quantities using a PTW-DIADOS 11003/1383, which is a CT radiation measurement instrument used by Siemens. We measured and analyzed the space resolutions of CT images caused by the change of pitches using an AAPM Standard Phantom in order to see how the adjustment of pitches influenced the CT images. In addition, in order to obtain SUVs caused by each change of pitches using a PET source made with a solid radioactive cylinder phantom, we confirmed whether the SUVs changed in the PET/CT images by calculating the SUVs of the fusion images caused by the change of pitches after obtaining CT and PET images and finishing the test. Results: 2slice CT scanner showed that radiation quantities largely dropped when pitches ranged from 0.7 to 1.3 and that the reduction of radiation quantities were smaller when pitches ranged from 1.5 to 1.9. That is, we found that the bigger pitch values are the smaller the radiation quantities of a patient are. Moreover, we realized that there is no change of SUVs caused by the increase of pitches and that pitch values do not influence PET SUVs and the quality of CT images. It is judged that using 1.5 as a pitch value contributes to the reduction of exposure dose of a patient as long as there is no problem in the quality of an image. Conclusions: When seeing the result of the research, hospital using a PET/CT should make an effort to reduce the exposure dose of a patient seeking pitch values appropriate for their hospital within the range in which there is no image distortion and PET SUVs are not influenced from pitches. We think that the research can apply to all multi-detectors having a CT scanner and that such a research will be needed for other equipments in the future.

  • PDF

Evaluation of the Usefulness of the Self-developed Kw-infrared Reflective Marker in Non-coplanar Treatment (비동일면 치료 시 자체 제작한 Kw-infrared Reflective Marker의 유용성 평가)

  • Kwon, Dong-Yeol;Ahn, Jong-Ho;Park, Young-Hwan;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: In radiotherapy that takes into account respiration using a RPM (Real time Position Management, Varian, USA) system, which can treat in consideration of the movement of tumor, infrared reflective markers supplied by manufacturers cannot obtain respiratory signal if the couch rotates at a certain angle or larger. In order to solve this problem, the author developed the 3D infrared reflective marker named 'Kw-marker' that can obtain respiratory signal at any angle, and evaluate its usefulness. Materials and Methods: In order to measure the stability of respiratory signal, we put the infrared reflective marker on the 3D moving phantom that can reproduce respiratory movement and acquired respiratory signal for 3 minutes under each of 3 conditions (A: $couch\;0^{\circ}$, a manufacturer's infrared reflective marker B: $couch\;0^{\circ}$, Kw-marker C: $couch\;90^{\circ}$, Kw-marker). By analyzing the respiratory signal using a breath analysis program (Labview Ver. 7.0), we obtained the peak value, valley value, standard deviation, variation value, and amplitude value. In order to examine the rotation error and moving range of the target, we placed a B.B phantom on the 3D moving phantom, and obtained images at a couch angle of $0^{\circ}$ and $90^{\circ}$ using OBI, and then acquired the X, Y and Z values (mm) of the ball bearing at the center of the B.B phantom. Results: According to the results of analyzing the respiratory signal, the standard deviation at the peak value was A: 0.002, B: 0.002 and C: 0.003, and the stability of respiration for amplitude was A: 0.15%, B: 0.14% and C:0.13%, showing that we could get respiratory signal stably by using the Kw-marker. When the couch rotated $couch\;90^{\circ}$, the mean rotation error of the ball bearing, namely, the target was X: -1.25 mm, Y: -0.45 mm and Z: +0.1 mm, which were within 1.3 mm on the average in all directions, and the difference in the moving range of the target was within 0.3 mm. Conclusion: When we obtained respiratory signal using the Kw-marker in non-coplanar treatment where the couch rotated, we could acquire respiratory signal stably and the Kw-marker was effective enough to substitute for the manufacturer's infrared reflective marker. When the rotation error and moving range of the target were measured, there was little difference, indicating that the displacement of the reflector movement in couch rotation is the cause of change in the scale and amplitude of respiratory signal. If the converted value of amplitude height according to couch angle is studied further and applied, it may be possible to perform non-coplanar phase-based gating treatment.

  • PDF

Routing for Enhancing Source-Location Privacy with Low Delivery Latency in Sensor Networks (센서 네트워크에서 낮은 전달 지연으로 근원지 위치 기밀을 강화하는 라우팅)

  • Tscha, Yeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.636-645
    • /
    • 2008
  • Most of routing schemes that protect the source's location from a malicious attacker usually make use of a path of a long length per message for the sake of lengthening the safety period. The biggest problem to such approaches is taking a very long latency in transferring messages to the destination. In this paper we show the problem to find the least-cost single path that is enough to keep the source-location always secure from the attacker, provided that it is used for the delivery of a set of messages given in priori, is NP-complete. Consequently we propose a routing protocol GSLP-w(GPSR-based Source-Location Privacy with crew size co) that is a trade-off between two extreme approaches. The advantage of GSLP-co lies in its enhanced safety period for the source and its lowered delivery latency in messaging. We consider NSP(Normalized Sefety Period) and NDL(Normalized Delivery Latency), measured in terms of the least number of hops to the destination, to achieve tangible interpretation of the results. We ran a simulation to confirm our claim by generating 100 topologies of 50,000 nodes with the average number of neighbors being 8. The results show that GSLP-$\omega$ provides more enhanced NSP compared to other protocols GSLP, an earlier version of GSLP-$\omega$, and PR-SP(Phantom Routing - Single Path), the most notable existing protocol for the source-location privacy, and less NDL than that of GSLP but more than that of PR-SP.

A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry (골밀도검사의 올바른 질 관리에 따른 임상적용과 해석 -이중 에너지 방사선 흡수법을 중심으로-)

  • Dong, Kyung-Rae;Kim, Ho-Sung;Jung, Woon-Kwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose : Because there is a difference depending on the environment as for an inspection equipment the important part of bone density scan and the precision/accuracy of a tester, the management of quality must be made systematically. The equipment failure caused by overload effect due to the aged equipment and the increase of a patient was made frequently. Thus, the replacement of equipment and additional purchases of new bonedensity equipment caused a compatibility problem in tracking patients. This study wants to know whether the clinical changes of patient's bonedensity can be accurately and precisely reflected when used it compatiblly like the existing equipment after equipment replacement and expansion. Materials and methods : Two equipments of GE Lunar Prodigy Advance(P1 and P2) and the Phantom HOLOGIC Spine Road(HSP) were used to measure equipment precision. Each device scans 20 times so that precision data was acquired from the phantom(Group 1). The precision of a tester was measured by shooting twice the same patient, every 15 members from each of the target equipment in 120 women(average age 48.78, 20-60 years old)(Group 2). In addition, the measurement of the precision of a tester and the cross-calibration data were made by scanning 20 times in each of the equipment using HSP, based on the data obtained from the management of quality using phantom(ASP) every morning (Group 3). The same patient was shot only once in one equipment alternately to make the measurement of the precision of a tester and the cross-calibration data in 120 women(average age 48.78, 20-60 years old)(Group 4). Results : It is steady equipment according to daily Q.C Data with $0.996\;g/cm^2$, change value(%CV) 0.08. The mean${\pm}$SD and a %CV price are ALP in Group 1(P1 : $1.064{\pm}0.002\;g/cm^2$, $%CV=0.190\;g/cm^2$, P2 : $1.061{\pm}0.003\;g/cm^2$, %CV=0.192). The mean${\pm}$SD and a %CV price are P1 : $1.187{\pm}0.002\;g/cm^2$, $%CV=0.164\;g/cm^2$, P2 : $1.198{\pm}0.002\;g/cm^2$, %CV=0.163 in Group 2. The average error${\pm}$2SD and %CV are P1 - (spine: $0.001{\pm}0.03\;g/cm^2$, %CV=0.94, Femur: $0.001{\pm}0.019\;g/cm^2$, %CV=0.96), P2 - (spine: $0.002{\pm}0.018\;g/cm^2$, %CV=0.55, Femur: $0.001{\pm}0.013\;g/cm^2$, %CV=0.48) in Group 3. The average error${\pm}2SD$, %CV, and r value was spine : $0.006{\pm}0.024\;g/cm^2$, %CV=0.86, r=0.995, Femur: $0{\pm}0.014\;g/cm^2$, %CV=0.54, r=0.998 in Group 4. Conclusion: Both LUNAR ASP CV% and HOLOGIC Spine Phantom are included in the normal range of error of ${\pm}2%$ defined in ISCD. BMD measurement keeps a relatively constant value, so showing excellent repeatability. The Phantom has homogeneous characteristics, but it has limitations to reflect the clinical part including variations in patient's body weight or body fat. As a result, it is believed that quality control using Phantom will be useful to check mis-calibration of the equipment used. A value measured a patient two times with one equipment, and that of double-crossed two equipment are all included within 2SD Value in the Bland - Altman Graph compared results of Group 3 with Group 4. The r value of 0.99 or higher in Linear regression analysis(Regression Analysis) indicated high precision and correlation. Therefore, it revealed that two compatible equipment did not affect in tracking the patients. Regular testing equipment and capabilities of a tester, then appropriate calibration will have to be achieved in order to calculate confidential BMD.

  • PDF

Accuracy evaluation of treatment plan according to CT scan range in Head and Neck Tomotherapy (두경부 토모테라피 치료 시 CT scan range에 따른 치료계획의 정확성 평가)

  • Kwon, Dong Yeol;Kim, Jin Man;Chae, Moon Ki;Park, Tae Yang;Seo, Sung Gook;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.13-24
    • /
    • 2019
  • Purpose: CT scan range is insufficient for various reasons in head and neck Tomotherapy®. To solve that problem, Re-CT simulation is good because CT scan range affects accurate dose calculations, but there are problems such as increased exposure dose, inconvenience, and a change in treatment schedule. We would like to evaluate the minimum CT scan range required by changing the plan setup parameter of the existing CT scan range. Materials and methods: CT Simulator(Discovery CT590 RT, GE, USA) and In House Head & Neck Phantom are used, CT image was acquired by increasing the image range from 0.25cm to 3.0cm at the end of the target. The target and normal organs were registered in the Head & Neck Phantom and the treatment plan was designed using ACCURAY Precision®. Prescription doses are Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy. Target is designed to 95%~107% of prescription dose and normal organ dose is designed according to SMC Protocol. Under the same treatment plan conditions, Treatment plans were designed by using five methods(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm) and two pitches(0.43, 0.287). The accuracy of dose delivery for each treatment plan was analyzed by using EBT3 film and RIT(Complete Version 6.7, RIT, USA). Results: The accurate treatment plan that satisfying the prescribed dose of Target and the tolerance dose in normal organs(SMC Protocol) require scan range of at least 0.25cm for Fixed-1cm, 0.75cm for Fixed-2.5cm, 1cm for Dynamic-2.5cm, and 1.75cm for Fixed-5cm and Dynamic-5cm. As a result of AnalysisAnalysis by RIT. The accuracy of dose delivery was less than 3% error in the treatment plan that satisfied the SMC Protocol. Conclusion: In case of insufficient CT scan range in head and neck Tomotherapy®, It was possible to make an accurate treatment plan by adjusting the FW among the setup parameter. If the parameter recommended by this author is applied according to CT scan range and is decide whether to re-CT or not, the efficiency of the task and the exposure dose of the patient are reduced.