• Title/Summary/Keyword: Phantom dosimeter

Search Result 163, Processing Time 0.029 seconds

Measurement and Analysis of Pediatric Patient Exposure Dose Using Glass dosimeter and a PC-Based Monte Carlo Program (Glass dosimeter와 PCXMC Program을 이용한 소아피폭선량 측정 및 분석)

  • Kim, Young-Eun;Lee, Jeong-Hwa;Hong, Sun-Suk;Lee, Kwan-Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • Exposed dose of young child should be managed necessarily. Young child is more sensitive than adult of a Radioactivity, especially, and lives longer than adult. Must reduce exposed dose which follows The ALARA(As Low As Reasonably Achievable)rule is recommended by ICRP(International Commission on Radiological Protection)within diagnostic useful range. Therefore, We have to prepare Pediatric DRL(Diagnostic Reference Level) in Korea as soon as possible. Consequently, in this study, wish to estimate organ dose and effective dose using PCXMC Program(a PC-Based Monte Carlo Program), and measure ESD(Entrance surface dose)and organ dose using Glass dosimeter, and then compare with DRL which follows EC(European Commission)and NRPB(National Radiological Protection Board). Using glass dosimeter and PCXMC programs conforming to the International Committee for Radioactivity Prevention(ICRP)-103 tissue weighting factor based on the item before the organs contained in the Chest, Skull, Pelvis, Abdomen in the organ doses and effective dose and dose measurements were evaluated convenience. In a straightforward way to RANDO phantom inserted glass dosimeter(GD352M)by using the hospital pediatric protocol, and in a indirect way was PCXMC the program through a virtual simulation of organ doses and effective dose were calculated. The ESD in Chest PA is 0.076mGy which is slightly higher than the DRL of NRPB(UK) is 0.07mGy, and is lower than the DRL of EC(Europe) which is 0.1mGy. The ESD in Chest Lateral is 0.130mGy which is lower than the DRL of EC(Europe) is 0.2mGy. The ESD in Skull PA is 0.423mGy which is 40 percent lower than the DRL of NRPB(UK) is 1.1mGy and is 28 percent lower than the DRL of EC(Europe) is 1.5mGy. The ESD in Skull Lateral is 0.478mGy which is half than the DRL of NRPB(UK) is 0.8mGy, is 40 percent lower than the DRL of EC(Europe) is 1mGy. The ESD in Pelvis AP is 0.293mGy which is half than the DRL of NRPB(UK) is 0.60mGy, is 30 percent lower than the DRL of EC(Europe)is 0.9mGy. Finally, the ESD in Abdomen AP is 0.223mGy which is half than the DRL of NRPB(UK) is 0.5mGy, and is 20 percent lower than the DRL of EC is 1.0mGy. The six kind of diagnostic radiological examination is generally lower than the DRL of NRPB(UK)and EC(Europe) except for Chest PA. Shouldn't overlook the age, body, other factors. Radiological technician must realize organ dose, effective dose, ESD when examining young child in hospital. That's why young child is more sensitive than adult of a Radioactivity.

  • PDF

Radiation Dose during Fluoroscopy at the Organ from Extracorporeal Shock Wave Lithotripsy (체외충격파쇄석술에서 투시 시 주요 장기별 방사선 피폭선량)

  • Moon, Sung-Ho;Jung, Hong-Ryang;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.343-350
    • /
    • 2010
  • We measured the radiation exposure for 55 persons (male: 36, female: 19) who was diagnosed with kidney and ureter stones and received ESWL. The absorbed dose was measured at the organ which is expected to absorb relatively much radiation (kidney, bladder, liver). The radiation dose measurement voltage 80kVp, current of 5mA as a fixed model of the human body by using the Rando phantom with Radiophotoluminescent Glass Dosimeter. Absorbed dose was measured for two times (5 minute and 10 minute, each) and converted to effective dose. Mean number of treatment was 1.8 times (1~4) per patient was the mean time of radiation exposure533 seconds (248-2516). For the treatment of right renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.458mSv, 0.152mSv, 1.404 mSv and 0.019mSv, respectively. For the treatment of left renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.496mSv, 0.252mSv, 0.178 mSv, and 0.017mSv, respectively. For the treatment of distal ureter stone, the effective dose of right kidney, left kidney and bladder was 0.009mSv, 0.01mSv and 3.742mSv, respectively.

Analysis of Dosimeter Error and Need for Calibration Guideline by Comparing the Dose Area of the Built-in Dose Area Product and the Moving Dose Area Product when using Automatic Exposure Controller in Intervention (인터벤션에서 자동노출제어장치 이용 시 내장형 면적 선량계와 이동형 면적 선량계의 면적선량 비교를 통한 선량계 오차분석과 교정지침 필요성 연구)

  • Choi, Ji-An;Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.508-515
    • /
    • 2018
  • The purpose of this study was to analyze the errors of the built - in dose area product and the calibrated moving dose area product when using automatic exposure controller of the interventional equipment. And then, the importance of the dosimeter calibration and the necessity of the calibration guideline were investigated. The experimental method was to assemble the phantom into Thin, Normal, and Heavy Adult according to the NEMA Phantom manual and to measure the dose area with the built-in dose area product and the moving dose area product. As a result, in all thicknesses, the built-in dose area product showed higher doses than the moving dose area product, and the thicker the thickness, the larger the difference. In addition, paired t-test was performed for each item and there was a significant difference in each item between p<0.05. In conclusion, considering the intervention which is highly exposed to the radiation exposure, it is that we have to know the accurate dose when using the AEC of the equipment. And there is no calibration guide for the built-in dose area meter, thus calibration guidelines should be prepared.

Research about the absorbed dose with speculum material-related in Hysterosalpingography (자궁난관 조영술 검사 시 Speculum 재질에 따른 흡수선량의 변화에 관한 연구)

  • Kim, Yun-Min
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The purpose of our study was to determine the entrance surface dose and absorbed dose in ovary when using the metal speculum and plastic speculum in hysterosalpingography respectively. The examinations was performed in anthropomorphic phantom into which calibrated photoluminescence glass dosimeter were placed on symphysis pubis level surface and ovary area. We checked average fluoroscopy time and spot expose times during the hysterosalpingography. It was average fluoroscopy time 58 sec, spot expose 5 times. We divided the subjects into two different groups to used metal and plastic speculum. We measured 10 times of absorbed dose in the same condition of the anthropomorphic phantom. We compared two groups adsorbed dose on ovary with speculum material-related. The entrance surface dose on of plastic Speculum using group was average 17.23 mGy, absorbed dose on ovary was average 3.51 mGy. The entrance surface dose on ovary of metal Speculum using group was average 19.95 mGy, absorbed dose on ovary was average 4.14 mGy. Plastic speculum using group shows a decrease absorbed dose(17.9%) as compared with metal speculum using group. The method of plastic speculum using in hysterosalpingography. might provide us with lower radiation dose, especially in patients with childbearing stage.

  • PDF

Comparison of Shield of Breast, Thyroid, Eyes for Exposure Dose Reduction in Mammography (유방엑스선검사 시 유방, 갑상샘, 안구 피폭선량 감소를 위한 차폐체 비교)

  • An, Se-Jeong;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.189-194
    • /
    • 2021
  • This study was conducted to reduce the exposure dose to the breast and adjacent organs as the number of Mammography increased. Therefore, it has been designed a shield in lead, bismuth + tungsten, and bismuth that does not require to be equipped by the patient, in which each type of shield was compared and analyzed of radiation exposure dose to breast, thyroid, and eye. Using a mammography machine, optically stimulated luminescent dosimeter(OSLD) was inserted to bilateral breast, thyroid, and eye of a dosimetry phantom to measure dose radiated onto the phantom. Shielding device was made in different thickness of 2mm, 3mm, and 5mm and dose evaluation was performed by measuring the dose while using lead, bismuth, and bismuth + tungsten prosthesis. When each shields combined with shielding device, were compared of dose, all showed similar does reduction in the dose to breast, thyroid, and eye in both cranialcaudal and mediolateraloblique view. Based on the current study, bismuth and bismuth + tungsten can replace conventional lead shield and it is anticipated to safely and conveniently reduce radiation exposure to breast, thyroid, and eye with the shield that does not require to be equipped.

Evaluation of the Shielding Effect of Lead Apron according to the Energy Spectrum Change of 99mTc (99mTc의 에너지 스펙트럼 변화에 따른 납 앞치마의 차폐 효과 평가)

  • Changyong Yoon;Youngsik Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.889-896
    • /
    • 2023
  • Changes in the energy spectrum were analyzed using 99mTc as a point source and a scattering phantom, and the shielding effect of the lead apron according to the changed gamma ray energy was evaluated. In the gamma ray energy spectrum of the scattering phantom, the photo peak area decreased and the compton scattering area increased compared to the point source. The coefficients for each energy range according to the change in the shape of the gamma ray source showed a reduction rate of up to 66.1 % at a distance of 20 cm compared to the coefficient of the point source, and in the compton scattering area, the coefficient of the scattering phantom was 122.2 % at a distance of up to 40 cm compared to the coefficient of the point source. In the difference in shielding rate according to the distance between the source and the scattering phantom using a gamma camera, the photo peak area showed similar results, but in the Compton scattering area, the shielding rate of the scattering phantom at a distance of 20 cm increased by 29.2 % compared to the shielding rate of the point source. As the distance increased, the difference in shielding rate decreased. In measuring the shielding rate of the lead apron using a radiation dosimeter, the difference in the shielding rate of the scattering phantom was up to 15.3 %, and as the distance increased, the difference in the shielding rate between the two sources decreased. The shielding rate of the lead apron of the scattering phantom is higher than that of the point source, and the effectiveness of the lead apron increases as the distance to the source increases. As a result, wearing a lead apron when directly confronting a patient who has injected radioactive pharmaceuticals is expected to be helpful in reducing radiation exposure.

In vivo and in vitro Confirmation of Dose Homogeneity in Total Body Irradiation with Thermoluminescent Dosimeter (인체 및 인형 팬톰에서 전신방사선조사시 열형광선량계(TLD)를 이용한 선량분포 균일성 확인)

  • Chie Eui Kyu;Park Suk Won;Kang Wee-Saing;Kim Il Han
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.321-328
    • /
    • 1999
  • Purpose : Total body irradiation (TBI) or whole body irradiation is used to acquire immune suppression, to treat malignant lymphoma and leukemia, and as an conditioning regimen for bone marrow transplantation. For these purposes, many methods were developed to obtain homogenous dose distribution. The objective of this study was to analyze and confirm the accuracy and the homogeneity of the treatment setup, the parallel opposed lateral technique, currently used in Seoul National University Hospital. Materials and Metheods : Surface dose data, measured with a thermoluminescent dosimeter, of 8 patients among 10 patients, who were given total body irradiation with the parallel opposed lateral technique between September 1996 to August 1998, at Seoul National University Hospital were analyzed. Surface doses were measured at the head, neck, axilla, thigh, and ankle level. Surface and midline doses were measured with similar set-up and technique in the Humanoid phantom. Results : Measured surface doses relative to prescribed dose for the head, neck, axilla, thight, and ankle leve were $91.3{\pm}7.8,{\;}98.3{\pm}7.5,{\;}95.1{\pm}6.3,{\;}98.3{\pm}5.5$, and $95.3{\pm} 6.3\%$, respectively. The midline doses of the head, neck, axilla, thigh, and ankle level estimated from the surface-to-midline ratios in the Humanoid Phantom were $103.4{\pm}9.0,{\;}107.8{\pm}10.5,{\;}91.1{\pm}6.1,{\pm} 93.8{\pm}4.5,{\;}and{\;}104.5{\pm}9.3\%$, respectively. Measured surface doses and estimated midline doses ranged from $-8.9\%$ to $+7.8\%$. Midline doses at the neck and the axilia level deviated more than $5\%$ from the prescribed doses. The difference of the estimated midline doses at the neck and the axilla level and the actual doses were attributed to the thickness differences between the Humanoid phantom and the patients. Conclusion Distribution of the midline doses as well as the suface doses were measured to be within $-8.7\~{\pm}7.8\%$ range. Actual dose distribution in the patient is expected to be better than the measured dose range mainly attributed to thickness difference between the patient and the Humanoid phantom.

  • PDF

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography (CT 검사에서 유리선량계를 이용한 수정체의 비스무트 차폐 효과)

  • Jung, Mi-Young;Kweon, Dae-Cheol;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The purpose of our study was to determine the eyeradiation dose when performing routine multi-detector computed tomography (MDCT). We also evaluated dose reduction and the effect on image quality of using a bismuth eye shield when performing head MDCT. Examinations were performed with a 64MDCT scanner. To compare the shielded/unshielded lens dose, the examination was performed with and without bismuth shielding in anthropomorphic phantom. To determine the average lens radiation dose, we imaged an anthropomorphic phantom into which calibrated photoluminescence glass dosimeter (PLD) were placed to measure the dose to lens. The phantom was imaged using the same protocol. Radiation doses to the lens with and without the lensshielding were measured and compared using the Student t test. In the qualitative evaluation of the MDCT scans, all were considered to be of diagnostic quality. We did not see any differences in quality between the shielded and unshielded brain. The mean radiation doses to the eyewith the shield and to those without the shield were 21.54 versus 10.46 mGy, respectively. The lens shield enabled a 51.3% decrease in radiation dose to the lens. Bismuth in-plane shielding for routine eye and head MDCT decreased radiation dose to the lenswithout qualitative changes in image quality. The other radiosensitive superficial organs specifically must be protected with shielding.

  • PDF

Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom (물리적 팬텀을 이용한 CT 촬영 환자의 피폭 선량 측정 및 평가)

  • Jang, Ki-Won;Lee, Choon-Sik;Kwon, Jung-Wan;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • The computed tomogrpahy(CT) provides a high quality in images of human body but contributes to the relatively high patient dose. The frequency of CT examination is increasing and, therefore, the concerns about the patient dose are also increasing. In this study the experimental determination of patient dose was performed by using a physical anthropomorphic phantom and thermoluminescent dosimeter(TLD). The measurements were done for the both axial and spiral scan mode. As a result the effective doses for each scan mode were 17.78mSv and 10.01 mSv respectively and the fact that the degree of the reduction in the patient dose depends on the pitch scan parameter was confirmed. The measurement methods suggested in this study can be applied for the reassessment of the patient dose when the technique in CT equipment is developed or the protocol for CT scanning is changed.