• Title/Summary/Keyword: Phantom dosimeter

Search Result 163, Processing Time 0.02 seconds

Response for Lead Block Thickness of Parallel Plate Detector using Dielectric Film (유전체필름을 이용한 평행판검출기의 납 차폐물 두께변화에 대한 반응)

  • Kim Yong-Eun;Cho Moon-June;Kim Jun-Sang;Oh Young-Kee;Kim Jhin-Kee;Shin Kyo-Chul;Kim Jeung-Kee;Jeong Dong-Hyeok;Kim Ki-Hwan
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • A parallel plate detector containing PTFE films in FEP film for relative dosimetry was designed to measure the response of detectors to S and 10 MV X-rays from a medical linear accelerator through different thicknesses of lead. The dielectric materials were 100 m thick. The set-up conditions for measurements with this detector were as follows: SSD=100 cm the test detector was at a depth of 5 cm and the reference chamber was at a depth of 10 cm from the phantom surface for 6 and 10 MV X-rays. Lead blocks were designed to cover the irradiated field. They were added to the tray to increase thickness sequentially. We found that the detector response decreased exponentially with the thickness of lead added. The linear attenuation coefficients of the test detector and reference chamber were 0.1414 and 0.541, respectively, for 6 MV X-rays and 0.1358 and 0.5279 for 10 MV X-rays. The test detector response was greater than that of the reference chamber. The response function was calculated from the measured values of the test detector and reference chamber using optimization. These optimized constants for the detector response function were independent of theenergy. As a result of optimizing the response function between detectors, the use of a relative dosimeter was validated, because the response of the test detector was 1% for 6 MV X-rays and 4% for 10 MV X-rays.

  • PDF

Invivo Dosimetry for Mammography with and without Lead Apron Using the Glass Dosimeters (유방촬영술에서 유리선량계를 이용한 납치마의 선량차폐 효과 측정)

  • Yu, Su-Jeong;Lim, Sangwook;Ma, Sun Young;Seo, Sun-Youl;Kim, Young-Jae;Kang, Young-Nam;Keum, Ki Chang;Cho, Samju
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • The purpose of this study is to see the usefulness of lead apron for critical organs near the breast under examining. For clinical experiment, 30 female volunteers who agreed to their participation in the experiments, were chosen and divided into two groups, 15 in group A and 15 in group B respectively. group A is to see whether each side of breast under mammography affects to other side glandular on the critical organs is same, because it is not allowed to scan the both breast for same person or to scan repeatedly. Group B is to see the effectiveness of lead apron during the mammography of right breast. Glass dosimeters were placed on the thyroid, the contralateral breast, and lower abdomen where near the breast during examining. The average glandular doses on the surface in mammography of the thyroid gland, the contralateral breast, the lower abdomen were 0.0692 mGy, 0.6790 mGy, and 0.0122 mGy, respectively, which was an extremely low level of glandular dose. In group B, as to the thyroid gland, average dose was decreased from 0.0922 mGy to 0.0158 mGy. The average dose of contralateral breast was decreased from 0.8575 mGy to 0.0286 mGy. The average doses of lower abdomen was decrease 0.0150 mGy to 0.0173 mGy. As to the lower abdomen, dose decreased from 0.0150 mGy before the use of an apron down to 0.0173 mGy after the use. As p-value was under 0.05, statistically significant difference was observed between the two groups. Wearing an apron can have the protective effects on the thyroid gland up to 20 times lower than not wearing one. Besides, it is also necessary to protect the other breast during the examination by wearing one.

Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy (방사선치료 선량 측정에 사용되는 열형광체에 따른 최대 형광 강도 특성)

  • Kang, Suman;Im, Inchul;Park, Cheolwoo;Lee, Mihyeon;Lee, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.181-187
    • /
    • 2014
  • The purpose of this study were to analyze the characteristic of the glow curves in order to the glow temperature of the thermoluminescent dosimeters (TLDs) for the absorbed dose measurement of the radiation therapy. In this study, we was used the TLDs of the LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn (Thermo Fisher Scientific Inc., USA). The source-to-solid dry phantom (RW3 slab, IBA Dosmetry, Germany) surface distance was set at 100 cm, and the exposure dose of 100 MU (monitor unit) was used 6- and 15-MV X-rays, and 6- and 12-MeV electron beams in the reference depth, respectively. After the radiations exposure, we were to analyze the glow curves by using the TL reader (Hashaw 3500, Thermo Fisher Scientific Inc., USA) at the fixed heating rate of $15^{\circ}C/sec$ from $50^{\circ}C$ to $260^{\circ}C$. The glow peaks, the trapping level in the captured electrons and holes combined with the emitted light, were discovered the two or three peak. When the definite increasing the temperature of the TLDs, the maximum glow peak representing the glow temperature was follow as; $LiF:Mg{\cdot}Ti$: $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$: $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy: $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn: $294.3{\pm}3.8^{\circ}C$, respectively. Because the glow emission probability of the captured electrons depend on the heating temperature after the exposure radiation, TLDs by applying the fixed heating rate, the accuracy of measurement will be able to improve within the absorbed dose measurement of the radiation therapy.