• Title/Summary/Keyword: Phantom dosimeter

Search Result 163, Processing Time 0.032 seconds

Effective Dose Determination From CT Head & Neck Region (두경부(Head & Neck) CT 검사 시 장기의 유효선량 측정)

  • Yun, Jae-Hyeok;Lee, Kwang-Weon;Cho, Young-Ki;Choi, Ji-Won;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.105-116
    • /
    • 2011
  • In this study, we present the measurements of effective dose from CT of head & neck region. A series of dose measurements in anthropomorphic Rando phantom was conducted using a radio photoluminescent glass rod dosimeter to evaluate effective doses of organs of head and neck region from the patient. The experiments were performed with respect to four anatomic regions of head & neck: optic nerve, pons, cerebellum, and thyroid gland. The head & neck CT protocol was used in the single scan (Brain, 3D Facial, Temporal, Brain Angiography and 3D Cervical Spine) and the multiple scan (Brain+Brain Angiography, Brain+3D Facial, Brain+Temporal, Brain+3D Cervical spine, Brain+3D Facial+Temporal, Brain+3D Cervical Spine+Brain Angiography). The largest effective dose was measured at optic nerve in Brain CT and Brain Angiography. The largest effective dose was delivered to the thyroid grand in 3D faical CT and 3D cervical spine, and to the pons in Temporal CT. In multiple scans, the higher effective dose was measured in the thyroid grand in Brain+3D Facial, Brain+3D Cervical Spine, Brain+3D Facial+Temporal and Brain+3D Cervical Spine+Brain Angiography. In addition, the largest effective dose was delivered to the cerebellum in Brain CT+Brain Angiography CT and higher effective dose was delivered to the pons in Brain+Temporal CT. The results indicate that in multiple scan of Brain+3D Cervical Spine+Brain Angiography, effective dose was 2.52 mSv. This is significantly higher dose than the limitation of annual effective dose of 1 mSv. The effective dose to the optic nerve was 0.31 mSv in Brain CT, which shows a possibility of surpassing the limitation of 1 mSv by furthre examination. Therefore, special efforts should be made in clinical practice to reduce dose to the patients.

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF

A study on the strategies to lower technologist occupational exposure according to the performance form in PET scan procedure (PET 검사실 종사자의 업무 행위 별 방사선피폭 조사에 따른 피폭선량 저감화를 위한 연구)

  • Ko, Hyun Soo;Kim, Ho Sung;Nam-Kung, Chang Kyeoung;Yoon, Soon Sang;Song, Jae Hyuk;Ryu, Jae Kwang;Jung, Woo Young;Chang, Jung Chan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.17-29
    • /
    • 2015
  • Purpose For nuclear medicine technologists, it is difficult to stay away from or to separate from radiation sources comparing with workers who are using radiation generating devices. Nuclear medicine technologists work is recognized as an optimized way when they are familiar with work practices. The aims of this study are to measure radiation exposure of technologists working in PET and to evaluate the occupational radiation dose after implementation of strategies to lower exposure. Materials and Methods We divided into four working types by QC for PET, injection, scan and etc. in PET scan procedure. In QC of PET, we compared the radiation exposure controlling next to $^{68}Ge$ cylinder phantom directly to controlling the table in console room remotely. In injection, we compared the radiation exposure guiding patient in waiting room before injection to after injection. In scan procedure of PET, we compared the radiation exposure moving the table using the control button located next to the patient to moving the table using the control button located in the far distance. PERSONAL ELECTRONIC DOSEMETER (PED), Tracerco$^{TM}$ was used for measuring exposed radiation doses. Results The average doses of exposed radiation were $0.27{\pm}0.04{\mu}Sv$ when controlling the table directly and $0.13{\pm}0.14{\mu}Sv$ when controlling the table remotely while performing QC. The average doses of exposed radiation were $0.97{\pm}0.36{\mu}Sv$ when guiding patient after injection and $0.62{\pm}0.17{\mu}Sv$ when guiding patient before injection. The average doses of exposed radiation were $1.33{\pm}0.54{\mu}Sv$ when using the control button located next to the patient and $0.94{\pm}0.50{\mu}Sv$ when using the control button located in far distance while acquiring image. As a result, there were statistically significant differences(P<0.05). Conclusion: From this study, we found that how much radiation doses technologists are exposed on average at each step of PET procedure while working in PET center and how we can reduce the occupational radiation dose after implementation of strategies to lower exposure. And if we make effort to seek any other methods to reduce technologist occupational radiation, we can minimize and optimize exposed radiation doses in department of nuclear medicine. Conclusion From this study, we found that how much radiation doses technologists are exposed on average at each step of PET procedure while working in PET center and how we can reduce the occupational radiation dose after implementation of strategies to lower exposure. And if we make effort to seek any other methods to reduce technologist occupational radiation, we can minimize and optimize exposed radiation doses in department of nuclear medicine.

  • PDF

Effect of Carbon Couch Side Rail and Vac-lok In case of Lung RPO irradiation (Lung RPO 선량전달시, Carbon Couch Side Rail과 Vac-lok이 미치는 영향)

  • Kim, Seok Min;Gwak, Geun Tak;Lee, Seung Hun;Kim, Jung Soo;Kwon, Hyoung Cheol;Kim, Yang Su;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.27-34
    • /
    • 2018
  • Purpose : To evaluate the effect of carbon couch side rail and vacuum immobilization device in case of lung RPO irradiation. Materials and Methods : The 10, 20, 30 mm thickness of vac-lok's right side were obtained. To measure of doses, glass dosimeters were used and measured reference point is left lung center at the phantom. A, B, C, and D points are left, right, down, and up directions based on the center point. In the state of Side-Rail-Out, place the without vac-lok, with the thickness of 10, 20, and 30 mm vac-lok. After the glass dosimeters was inserted in center, A, B, C, and D points, 100 MU of 6 MV X-ray were irradiated to the referenced center point in the condition of $10{\times}10cm^2$ field size, SAD 100 cm, gantry angle 225, 300 MU/min dose rate. Five measurements were made for each point. In the state of Side-Rail-In, five measurement were made for each point under the same conditions. The average is measured on each of the five Side-Rail-Out and Side-Rail-In measurements. Results : In the presence of side rail, the dose reduction ratio was -11.8 %, -12.3 %, -4.1 %, -12.3 %, -7.3 % for each A, B, C, and D points. In the state of Side-Rail-Out, the dose reduction ratio for the using 10 mm thickness of vac-lok was -0.9 % than without vac-lok. The dose reduction ratio for the using 20 mm thickness of vac-lok was -2.0 %, for the using 30 mm thickness of the vac-lok was -3.0 % than without vac-lok. In the state of Side-Rail-In, the dose reduction ratio for the using 10 mm thickness of vac-lok was -1.0 % than without vac-lok. The dose reduction ratio for the using 20 mm vac-lok was -2.1 %, for the using 30 mm vac-lok was -3.0 % than without vac-lok. Based on the value of no vac-lok dose in the Side-Rail-In state, The dose reduction ratios for the using 10 mm, 20 mm and 30 mm thickness of vac-loks In the Side-Rail-Out that the center point were -12.7 %, -13.7 %, -14.2 % and -12.8 %, -13.8 %, -14.5 % respectively at point A. The dose reduction ratios for the same conditions to the B point were -4.9 %, -6.1 %, -7.1 % and -13.4 %, -14.4 %, -15.5 % respectively at point C. The dose reduction ratios for the same conditions to the D point were -8.4 %, -9.0 %, -10.4 % respectively. Conclusion : The attenuation was caused by presence of side rails and thickness of vac-lok. Pay attention to these attenuation factors, making it a more effective radiation therapy.

  • PDF

A Study on the Patient Exposure Doses from the Panoramic Radiography using Dentistry (치과 파노라마 촬영에서 환자의 피폭선량에 관한 연구)

  • Park, Ilwoo;Jeung, Wonkyo;Hwang, Hyungsuk;Lim, Sunghwan;Lee, Daenam;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • This study estimate radiation biological danger factor by measuring patient's exposed dose and propose the low way of patient's exposed dose in panoramic radiography. We seek correcting constant of OSL dosimeter for minimize the error of exposed dose's measurement and measure the Left, Right crystalline lens, thyroid, directly included upper, lower lips, the maxillary bone and the center of photographing that indirect included in panoramic radiography by using the human body model standard phantom advised in ICRP. In result, the center of photographing's level of radiation maximum value is $413.67{\pm}6.53{\mu}Gy$ and each upper, lower lips is $217.80{\pm}2.98{\mu}Gy$, $215.33{\pm}2.61{\mu}Gy$. Also in panoramic radiography, indirect included Left, Right crystalline lens's level of radiation are $30.73{\pm}2.34{\mu}Gy$, $31.87{\pm}2.50{\mu}Gy$, and thyroid's level of measured exposed dose can cause effect of radiation biological and we need justifiable analysis about radiation defense rule and substantiation advised international organization for the low way of patient's exposed dose in panoramic radiography of dental clinic and we judge need the additional study about radiation defense organization for protect the systematize protocol's finance and around internal organs for minimize until accepted by many people that is technological, economical and social fact by using panoramic measurement.

Feasibility of MatriXX for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰)

  • Kang, Min-Young;Kim, Yoen-Lae;Park, Byung-Moon;Bae, Yong-Ki;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Purpose: To evaluate the feasibility of a commercial ion chamber array for intensity modulated radiation therapy (IMRT) quality assurance (QA) was performed IMRT patient-specific QA Materials and Methods: A use of IMRT patient-specific QA was examined for nasopharyngeal patient by using 6MV photon beams. The MatriXX (Wellhofer Dosimetrie, Germany) was used for IMRT QA. The case of nasopharyngeal cancer was performed inverse treatment planning. A hybrid dose distribution made on the CT data of MatriXX and solid phantom all of the same gantry angle (0$^\circ$). The measurement was acquired with geometrical condition that equal to hybrid treatment planning. The $\gamma$-index (dose difference 3%, DTA 3 mm) histogram was used for quantitative analysis of dose discrepancies. An absolute dose was compared at the high dose low gradient region. Results: The dose distribution was shown a good agreement by gamma evaluation. A proportion of acceptance criteria was 95.8%, 97.52%, 96.28%, 98.20%, 97.78%, 96.64% and 92.70% for gantry angles were 0$^\circ$, 55$^\circ$, 110$^\circ$, 140$^\circ$, 220$^\circ$, 250$^\circ$ and 305$^\circ$, respectively. The absolute dose in high dose low gradient region was shown reasonable agreement with the RTP calculation within $\pm$3%. Conclusion: The MatriXX offers the dosimetric characteristics required for performing both relative and absolute measurements. If MatriXX use in the clinic, it could be simplified and reduced the IMRT patient-specific QA workload. Therefore, the MatriXX is evaluated as a reliable and convenient dosimeter for IMRT patient-specific QA.

  • PDF

A Study for Establishment of Diagnostic Reference Level of Patient Dose in Skull Radiography (우리나라의 두부 엑스선검사에서의 환자선량 권고량)

  • Lee, Jung-Eun;Jeong, Jin-Baek;Lee, Hyun-Koo;Lim, Chun-Il;Son, Hye-Kyung;Jin, Hyun-Mi;Kim, Byung-Woo;Yang, Hyun-Kyu;Kim, Hyeog-Ju;Kim, Dong-Sup;Lee, Kwang-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.111-116
    • /
    • 2010
  • Ionizing radiation is most widely used for X-Ray examination among all artificial radiation exposure, it takes up the largest proportion. Even in Korea, the medical exposure by diagnostic X-Ray examination takes up 17.4% of all radiation exposure. It takes up 92% even in artificial radiation exposure. There were 111,567 cases X-Ray radiography for skull diagnosis in 2007, which is 3% annual increase since 2004. Thus, It is need to establish the diagnostic reference level and the medical facilities as a diagnostic reference level to optimize radiation protection of the patients and to reduce the doses of X-ray. In this paper, we survey patient dose on skull radiography - collected from 114 medical facilities nationwide by using human phantom and glass dosimeter. When the patient dose for the skull radiography was measured and evaluated to establish the diagnostic reference level, 2.23 mGy was established for posterior-anterior imaging and 1.87 mGy for lateral imaging was established. The posterior-anterior skull radiography entrance surface dose of 2.23 is less than the guidance level of 5 mGy from the global organizations such as World Health Organization (WHO) and International Atomic Energy Agency (IAEA), and 1.87 mGy for the lateral skull imaging is less than the guidance level of 3 mGy, which is guided by the global organizations such as World Health Organization (WHO) and International Atomic Energy Agency (IAEA).

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

Consideration on Measured Patients Dose of Three-Dimensional and Four-Dimensional Computer Tomography when CT-Simulation to Radiation Therapy (방사선치료를 위한 CT 검사 시 3DCT와 4DCT에 대한 피폭선량 고찰)

  • Park, Ryeong-Hwang;Kim, Min-Jung;Lee, Sang-Kyu;Park, Kwang-Woo;Jeon, Byeong-Cheol;Cho, Jeong-Hee;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 2011
  • This study was to measure the patient dose difference between 3D treatment planning CT and 4D respiratory gating CT. Study was performed with each 10 patients who have lung and liver cancer for measured patient exposure dose by using SOMATON SENSATION OPEN(SIMENS, GERMANY). CTDIvol and DLP value was used to analyze patient dose, and actual dose was measured in the location of liver and kidney for abdominal examination and lung, heart and spinal cord for chest examination. Rando phantom were used for the experiment. OSLD was used for in-vitro and in-vivo dosimetry. Increasing overall actual dose in 4D respiratory gated CT-simulation using OSLD increase the dose by 5.5 times for liver cancer patients and 6 times for lung cancer patients. In CT simulation of 10 lung cancer patients, CTDIvol value was increased by 5.7 times and DLP 2.4 times. For liver cancer patients, CTDIvol was risen by 3.8 times and DLP 1.6 times. The accuracy of treatment volume could be increased in 4D CT planning for position change due to the breaths of patient in the radiation therapy. However, patients dose was increased in 4D CT than 3D CT. In conclusion, constant efforts is required to reduce patients dose by reducing scan time and scan range.

The Evaluation and Development of Head and Neck Radiation Protective Device for Chest Radiography in 10 Years Children (소아(10세) 흉부 방사선촬영에서의 두경부 방사선 방어기구 개발 및 평가)

  • Lee, Jun Ho;Lim, Hyun Soo;Lee, Seung Yeol
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • The frequency of diagnostic radiation examinations in medical institutions has recently increased to 220 million cases in 2011, and the annual exposure dose per capita was 1.4 mSv, 51% and 35% respectively, compared to those in 2007. The number of chest radiography was found to be 27.59% of them, the highest frequency of normal radiography. In this study, we developed a shielding device to minimize radiation exposure by shielding areas of the body which are unnecessary for image interpretation, during the chest radiography. And in order to verify its usefulness, we also measured the difference in entrance surface dose (ESD) and the absorbed dose, before and after using the device, by using an international standard pediatric (10 years) phantom and a glass dosimeter. In addition, we calculated the effective dose by using a Monte Carlo simulation-based program (PCXMC 2.0.1) and evaluated the reduction ratio indirectly by comparing lifetime attributable risk of cancer incidence (LAR). When using the protective device, the ESD decreased by 86.36% on average, nasal cavity $0.55{\mu}Sv$ (74.06%), thyroid $1.43{\mu}Sv$ (95.15%), oesophagus $6.35{\mu}Sv$ (78.42%) respectively, and the depth dose decreased by 72.30% on average, the cervical spine(upper spine) $1.23{\mu}Sv$ (89.73%), salivary gland $0.5{\mu}Sv$ (92.31%), oesophagus $3.85{\mu}Sv$ (59.39%), thyroid $2.02{\mu}Sv$ (73.53%), thoracic vertebrae(middle spine) $5.68{\mu}Sv$ (54.01%) respectively, so that we could verify the usefulness of the shielding mechanism. In addition, the effective dose decreased by 11.76% from $8.33{\mu}Sv$ to $7.35{\mu}Sv$ before and after wearing the device, and in LAR assessment, we found that thyroid cancer decreased to male 0.14 people (95.12%) and female 0.77 people (95.16%) per one million 10-year old children, and general cancers decreased to male 0.14 people (11.70%) and female 0.25 people (11.70%). Although diagnostic radiation examinations are necessary for healthcare such as the treatment of diseases, based on the ALARA concept, we should strive to optimize medical radiation by using this shielding device actively in the areas of the body unnecessary for the diagnosis.