• Title/Summary/Keyword: Phage display

Search Result 78, Processing Time 0.034 seconds

Selection of Potential Virulence Factors Contributing to Streptococcus suis Serotype 2 Penetration into the Blood-Brain Barrier in an In Vitro Co-Culture Model

  • Liu, Hongtao;Zhu, Seng;Sun, Yingying;Li, Na;Gu, Jingmin;Sun, Changjiang;Feng, Xin;Han, Wenyu;Jiang, Jianxia;Lei, Liancheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.161-170
    • /
    • 2017
  • Meningitis caused by Streptococcus suis serotype 2 (S. suis 2) is a great threat to the pig industry and human health. Virulence factors associated with the pathogenesis of meningitis have yet to be clearly defined, even though many potential S. suis 2 virulence factors have been identified. This greatly hinders the progress of S. suis 2 meningitis pathogenesis research. In this study, a co-culture blood-brain barrier (BBB) model was established using primary porcine brain microvascular endothelial cells and astrocytes, and the whole genome library of S. suis 2 was constructed using phage display technology. Finally, a total of 14 potential virulence factors contributing to S. suis 2 adherence to and invasion of the BBB were selected by analyzing the interactions between the phage library and the co-culture model. Twelve of these factors have not been previously reported in meningitis-related research. The data provide valuable insight into the pathogenesis of S. suis 2 meningitis and potential targets for the development of drug therapies.

Comprehensive Identification of Tumor-associated Antigens via Isolation of Human Monoclonal Antibodies that may be Therapeutic

  • Kurosawa, Yoshikazu
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.4-7
    • /
    • 2009
  • Although the success of trastuzumab and rituximab for treatment of breast cancer and non-Hodgkins lymphoma, respectively, suggests that monoclonal antibodies(mAbs) will become important therapeutic agents against a wider range of cancers, useful therapeutic Abs are not yet available for the majority of the human cancers because of our lack of knowledge of which antigens (Ags) are likely to become useful targets. We established a procedure for comprehensive identification of such Ags through the extensive isolation of human mAbs that may be therapeutic. Using the phage-display Ab library we isolated a large number of human mAbs that bind to the surface of tumor cells. They were individually screened by immunostaining, and clones that preferentially and strongly stained the malignant cells were chosen. The Ags recognized by those clones were isolated by immunoprecipitation and identified by mass spectrometry(MS). We isolated 2,114 mAbs with unique sequences and identified 25 distinct Ags highly expressed on several carcinomas. Of those 2,114 mAbs 434 bound to specifically to one of the 25 Ags. I am going to discuss how we could select proper target Ags for therapeutic Abs and candidate clones are therapeutic agents.

Neutralizing Chimeric Mouse-human Antibodies against Burkholderia pseudomallei Protease: Expression, Purification and Characterization

  • Chan, Shzu-Wei;Ong, Guan-Im;Nathan, Sheila
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.556-564
    • /
    • 2004
  • A recombinant Fab monoclonal antibody (Fab) C37, previously obtained by phage display and biopanning of a random antibody fragment library against Burkholderia pseudomallei protease, was expressed in different strains of Escherichia coli. E. coli strain HB2151 was deemed a more suitable host for Fab expression than other E. coli strains when grown in media supplemented with 0.2% glycerol. The expressed Fab fragment was purified by affinity chromatography on a Protein G-Sepharose column, and the specificity of the recombinant Fab C37 towards B. pseudomallei protease was proven by Western blotting, enzyme-linked immunosorbent assay (ELISA) and by proteolytic activity neutralization. In addition, polyclonal antibodies against B. pseudomallei protease were produced in rabbits immunized with the protease. These were isolated from high titer serum by affinity chromatography on recombinant-Protein A-Sepharose. Purified polyclonal antibody specificity towards B. pseudomallei protease was proven by Western blotting and ELISA.

Construction of a Large Synthetic Human scFv Library with Six Diversified CDRs and High Functional Diversity

  • Yang, Hye Young;Kang, Kyung Jae;Chung, Julia Eunyoung;Shim, Hyunbo
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.225-235
    • /
    • 2009
  • Antibody phage display provides a powerful and efficient tool for the discovery and development of monoclonal antibodies for therapeutic and other applications. Antibody clones from synthetic libraries with optimized design features have several distinct advantages that include high stability, high levels of expression, and ease of downstream optimization and engineering. In this study, a fully synthetic human scFv library with six diversified CDRs was constructed by polymerase chain reaction assembly of overlapping oligonucleotides. In order to maximize the functional diversity of the library, a ${\beta}$-lactamase selection strategy was employed in which the assembled scFv gene repertoire was fused to the 5'-end of the ${\beta}$-lactamase gene, and in-frame scFv clones were enriched by carbenicillin selection. A final library with an estimated total diversity of $7.6{\times}10^9$, greater than 70% functional diversity, and diversification of all six CDRs was obtained after insertion of fully randomized CDR-H3 sequences into this proofread repertoire. The performance of the library was validated using a number of target antigens, against which multiple unique scFv sequences with dissociation constants in the nanomolar range were isolated.

Development of the Phage Displayed Peptide as an Inhibitor of MCP-1 (Monocyte Chemoattractant Protein-1)-mediated Angiogenesis

  • Jeong, Sun-Joo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.132-134
    • /
    • 2005
  • The CC chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a crucial role in the initiation of atherosclerosis and has direct effects that promote angiogenesis. To develop a specific inhibitor for MCP-1-induced angiogenesis, we performed in vitro selection employing phage display random peptide libraries. Most of the selected peptides were found to be homologous to the second extracellular loops of CCR2 and CCR3. We synthesized the peptide encoding the homologous sequences of the receptors and tested its effect on the MCP-1 induced angiogenesis. Surface Plasmon Resonance measurements demonstrated specific binding of the peptide to MCP-1 but not to the other homologous protein, MCP-3. Flow cytometry revealed that the peptide inhibited the MCP-1 binding to THP-1 monocytes. Moreover, CAM and rat aortic ring assays showed that the peptide inhibited MCP-1 induced angiogenesis. Our observations indicate that the MCP-1-binding peptide exerts its anti-angiogenic effect by interfering with the interaction between MCP-1 and its receptor.

  • PDF

Isolation and Characterization of Human scFv Molecules Specific for Recombinant Human Heat Shock Protein (HSP) 70.1

  • Baek, Hyun-jung;Lee, Jae-seon;Seo, Jeong-sun;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • Background: The heat shock proteins (HSPs) play an important role in cellular protection mechanisms against physical or chemical stresses. In this study scFv antibodies specific for human HSP70.1 were isolated from a semi-synthetic human scFv library with the ultimate goal of developing anti-HSP70.1 intracellular antibody (intrabody) that may offer an attractive alternative to gene targeting to study the function of the protein in cells. Methods: A semi-synthetic human scFv display library ($5{\times}10^{8}$ size) was constructed using pCANTAB-5E vector and the selection of the library against bacterially expressed recombinant human HSP70.1 was attempted by panning. Results: Three positive clones specific for recombinant HSP70.1 were identified. All three clones used $V_{H}$ subgroup III. On the other hand, $V_{L}$ of two clones belonged to the kappa light chain subgroup I, but the other utilized $V_{k}$ subgroup IV Interestingly, these scFv molecules specifically reacted to the recombinant HSP70.1, yet failed to recognize native HSP70 induced in U937 human monocytic cells by heat treatment. Conclusion: Our results indicated that affinity selection of an scFv phage display library using recombinant antigens produced in E. coli might not guarantee the isolation of scFv antibody molecules specific for a native form of the antigen. Therefore, the source of target antigens needs to be chosen carefully in order to isolate biofunctional antibody molecules.

Generation and Characterization of Monoclonal Antibodies to the Ogawa Lipopolysaccharide of Vibrio cholerae O1 from Phage-Displayed Human Synthetic Fab Library

  • Kim, Dain;Hong, Jisu;Choi, Yoonjoo;Han, Jemin;Kim, Sangkyu;Jo, Gyunghee;Yoon, Jun-Yeol;Chae, Heesu;Yoon, Hyeseon;Lee, Chankyu;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1760-1768
    • /
    • 2020
  • Vibrio cholerae, cause of the life-threatening diarrheal disease cholera, can be divided into different serogroups based on the structure of its lipopolysaccharide (LPS), which consists of lipid-A, core-polysaccharide and O-antigen polysaccharide (O-PS). The O1 serogroup, the predominant cause of cholera, includes two major serotypes, Inaba and Ogawa. These serotypes are differentiated by the presence of a single 2-O-methyl group in the upstream terminal perosamine of the Ogawa O-PS, which is absent in the Inaba O-PS. To ensure the consistent quality and efficacy of the current cholera vaccines, accurate measurement and characterization of each of these two serotypes is highly important. In this study, we efficiently screened a phage-displayed human synthetic Fab library by bio-panning against Ogawa LPS and finally selected three unique mAbs (D9, E11, and F7) that specifically react with Ogawa LPS. The mAbs bound to Vibrio cholerae vaccine in a dose-dependent fashion. Sequence and structure analyses of antibody paratopes suggest that IgG D9 might have the same fine specificity as that of the murine mAbs, which were shown to bind to the upstream terminal perosamine of Ogawa O-PS, whereas IgGs F7 and E11 showed some different characteristics in the paratopes. To our knowledge, this study is the first to demonstrate the generation of Ogawa-specific mAbs using phage display technology. The mAbs will be useful for identification and quantification of Ogawa LPS in multivalent V. cholerae vaccines.

Screening of Skin-permeable Peptide in Thermal Stabilizing Formulation Using Phage Display (파지디스플레이를 이용한 성장인자 안정화 제형 맞춤형 피부 투과 펩타이드의 개발)

  • Lee, Seol-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.326-333
    • /
    • 2018
  • In this study, we identified methods to improve heat stability and skin permeability of functional protein biopolymers, such as growth factors, enzymes, and peptides. The biopolymers participate in cellular activation and catalytic functions in vivo. Therefore, when applied to cosmetics, their efficacies are expected to be helpful for skin care. However, they have disadvantages that include instability to heat and low skin permeability due to their high molecular weight. To overcome these problems, we searched for a composition that increases heat stability. Stability was improved using a polymeric humectant having a long polyethylene glycol length, compared with a mono-molecular structure humectant. Next, to enhance skin permeation, a permeation enhancing peptide was selected from a phage library. The permeation enhancing peptide can be commonly used to promote the permeation of growth factors, enzymes, and peptides. Screening was performed on the polymeric humectant formulation. One dominant peptide from the modified-screening method was identified. Furthermore, it was confirmed that the permeability of the peptide was better than that of the peptide developed through a screening system based on phosphate-buffered saline. The data indicate that the polymeric humectant formulation will be helpful for increasing the heat stability of protein ingredients and that skin permeability could be increased by a formulation-specific, penetration-enhancing peptide.

The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity

  • Lin, Yingjia;Li, Yang;Song, Zhi-Guang;Zhu, Hongyan;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.330-338
    • /
    • 2017
  • Background: Ginsenoside Rh2 (G-Rh2) is a ginseng saponin that is widely investigated because of its remarkable antitumor activity. However, the molecular mechanism by which (20S) G-Rh2 triggers its functions and how target animals avoid its cytotoxic action remains largely unknown. Methods: Phage display was used to screen the human targets of (20S) G-Rh2. Fluorescence spectroscopy and UV-visible absorption spectroscopy were used to confirm the interaction of candidate target proteins and (20S) G-Rh2. Molecular docking was utilized to calculate the estimated free energy of binding and to structurally visualize their interactions. MTT assay and immunoblotting were used to assess whether human serum albumin (HSA), bovine serum albumin (BSA), and bovine serum can reduce the cytotoxic activity of (20S) G-Rh2 in HepG2 cells. Results: In phage display, (20S) G-Rh2-beads and (20R) G-Rh2-beads were combined with numerous kinds of phages, and a total of 111 different human complementary DNAs (cDNA) were identified, including HSA which had the highest rate. The binding constant and number of binding site in the interaction between (20S)-Rh2 and HSA were $3.5{\times}10^5M^{-1}$ and 1, and those in the interaction between (20S) G-Rh2 and BSA were $1.4{\times}10^5M^{-1}$ and 1. The quenching mechanism is static quenching. HSA, BSA and bovine serum significantly reduced the proapoptotic effect of (20S) G-Rh2. Conclusion: HSA and BSA interact with (20S) G-Rh2. Serum inhibited the activity of (20S) G-Rh2 mainly due to the interaction between (20S) G-Rh2 and serum albumin (SA). This study proposes that HSA may enhance (20S) G-Rh2 water solubility, and thus might be used as nanoparticles in the (20S) G-Rh2 delivery process.

Neutralization of Human Papillomavirus by Specific Nanobodies Against Major Capsid Protein L1

  • Minaeian, Sara;Rahbarizadeh, Fatemeh;Zarkesh-Esfahani, Sayyed Hamid;Ahmadvand, Davoud;Broom, Oliver Jay
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.721-728
    • /
    • 2012
  • The human papillomavirus (HPV) is the main cause of cervical cancer in developing countries. Rapid diagnosis and initiation of treatment of the HPV infection are critical. Various methods have been employed to reduce the immunogenicity of antibodies targeting HPV serotypes. Nanobodies are the smallest fragments of naturally occurring single-domain antibodies with their antigen-binding site compromised into a single domain. Nanobodies have remarkable properties such as high stability, solubility, and high homology to the human VH3 domain. In this study, a phagemid library was employed to enrich for nanobodies against the L1 protein of the human papilloma virus. Binding reactivity of the selected clones was evaluated using phage enzyme-linked immunosorbent assay (phage-ELISA). Finally, two nanobodies (sm5 and sm8) with the best reactivity against the Gardasil vaccine and the purified HPV-16 L1 protein were expressed and purified using a $Ni^+$-NTA column. The accuracy of expression and purification of the nanobodies was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting assays. In vitro studies demonstrated that neutralization was achieved by the selected nanobodies. The ease of generation and unique features of these molecules make nanobodies promising molecules for the new generation of HPV diagnosis and therapy.