• Title/Summary/Keyword: Petrochemical

Search Result 700, Processing Time 0.026 seconds

The Wondong magmatic system : its petrochemical evolution (원동 마그마계 : 암석화학적 진화)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.166-184
    • /
    • 1997
  • The Wondong caldea is a deeply eroded structure that offers spectacular exposures through the core and margins of a resurgent caldera. The Wondong Tuff and the postcollapse intrusions range from medium-silica rhyolite to rhyodacite in composition and the postcollapse lava and tuff, preresurgent and resurgent intrusions also range from medium-silica rhyolite to an-desite, which jump to gap dacite composition. The continuous compositional zonations generally define a large stratified magma system in the postcollapse and resurgent magma chamber. Isotopic and trace element evidence suggest that the compositional zonations might have resulted from the differentiations from crystal fractionations of a parental andesitic magma, accompanying a little contamination from the crustal assimilations near the chamber roof and wall. But chemically and isotopically distinct late intusions might have resulted from emplacement of any different magma batch.

  • PDF

An experimental study on performance evaluation for development of compact steam unit applied with hybrid plate heat exchanger (하이브리드 판형 열교환기 적용 컴팩트 스팀 유닛 개발을 위한 성능 평가에 관한 실험적 연구)

  • Park, Jae-Hong;Cho, Sung-Youl;Lee, Jun-Seok;Lee, Sang-Rae;Kim, Seung-Hyun;Lim, Gye-Hun;Seo, Jung-Wan;Kim, Jeung-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.296-301
    • /
    • 2017
  • In various industrial places such as power generation plants, petrochemical and unit factories, the demands of systems that produce hot water by utilizing wasted or surplus steam have been increased. Compact steam unit(CSU) is a system that can meet these demands and produce hot water by using surplus or wasted steam, and it is also one of the good solutions in view of energy reuse. The new CSU with a capacity of 1,600 kW was developed with a hybrid plate heat exchanger of which thermal performances are better than a conventional plate heat exchanger, an improved temperature control valve, a user-friendly control system, and other components in this study. The purpose of this study was to obtain performance data of the new CSU through various experiments and utilize them for the CSU commercialization. The experimental results show that heat balances between the hot side(steam) and the cold side(cold water) were within ${\pm}0.77%$, and the fluctuations of outlet temperature of the secondary side which are one of the most important evaluation factors in the CSU were $(0{\sim}0.3)^{\circ}C$.

A basic study on development of high-pressure compact steam unit applied hybrid heat exchanger (하이브리드 열교환기 적용 고압 컴팩트 스팀 유닛 개발에 관한 기초 연구)

  • Kim, Jeung-Hoon;Lim, Gye-Hun;Kim, Seung-Hyun;Jin, Chul-Kyu;Park, Jae-Hong;Cho, Sung-Youl;Hong, In-Ki;Lee, Sang-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In various industrial plants such as power generation plants, petrochemical plants, and unit factories, there is an increasing demand for a system that generates hot water using waste or surplus steam. Compact steam unit (CSU), which produces hot water by using steam, is a good solution considering energy reuse. In this study, as a basic study to develop a high-pressure CSU, heat transfer characteristics of a hybrid heat exchanger were investigated through experiments, in order to use the hybrid heat exchanger instead of a conventional plate heat exchanger as the core component of CSU. The experimental results are the followings. Heat balance between the hot side and cold side was satisfied within ${\pm}5%$. Overall heat transfer coefficient increased linearly as the Reynolds number increased and exceeded $5,524W/m^2K$ when the flow velocity was above 0.5 m/s. In addition, pressure drop also increased as the Reynolds number increased, and pressure drop per unit length was below 50 kPa/m.

Applications of Mathematical Optimization Method for Chemical Industries (화학 산업에서 수학적 최적화 기법을 적용한 사례)

  • Kim, Eun-Yong;Heo, Soon-Ki;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • Executions of SCM in a chemical company of which divisions produce petrochemicals, compounds, batteries, IT material and medicine directly affect their own profit. Execution level of SCM or optimization is very important. This work presents activities of SCM and optimization of inefficient issues in several industrial divisions using mathematical optimization method. The meaning is not only academic research but also making a useful tool which active partner deals with in his work. It is explained how to do beforehand and afterward optimization problem. The benefits are mentioned in the sections. The first of examples would be cover supply plan optimization, optimal profit business plan, and scheduling of a stretching process of polarizer based on minimizing raw material loss in polarizer production. The second example would be cover the optimization of production/packaging plans to maximize productivity of Poly Olefin processes, and the third example is minimization of transition loss in the production of battery electrodes. The fourth example would be cover scheduling of vessel approaching to berth. Because transportation of large portion of raw material and products of petrochemical industry is dealt with vessel, scheduling of vessel approaching to berth is important at the shore of large difference of tide. The final example would be scheduling problem to minimization of change over time of ABS semi products.

A Study of Environment Analysis and Entry Plan for Medium and Small Enterprises' Vietnam Advance (중소기업의 베트남 진출을 위한 환경분석 및 진입 방안에 관한 연구)

  • Choi, Seung-Il;Kim, Dong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.307-313
    • /
    • 2010
  • Recently in Korea, or companies considering overseas expansion is often already begun. Past, enterprise's overseas economic cooperation fund(OECF) was consisted of overseas economic cooperation fund(OECF) of most large enterprise leading but medium and small enterprises as well as large enterprise is recognized for factor that competitive power security through overseas economic cooperation fund(OECF) is indispensable by economy opening Tuesday such as deregulation of great foreign enemy environment change and a technology and capital introduction. In the case of Korea, that advance of the China is going through bottleneck among by far bank Vietnam advance gradually expand. Therefore, in this study, I wished to quote plan for efficient and desirable Vietnam advance strategy establishment regarding our country enterprise's Vietnam advance through economy, politics, social environment analysis. In this study, can do on the basis of Vietnam advance connection domestic?outside literature investigation and virtue study through theoretical investigation according to these purpose and behaved theoretical investigation and lift construction materials allied industry, labor-intensive manufacturing industry, fisheries farm produce cultivation, processing household mascot etc. as energy industry, refined oil and petrochemical industry, electric-power industry, other field by our country medium and small enterprise.

Development of Life Test Equipment with Real Time Monitoring System for Butterfly Valves

  • Lee, Gi-Chun;Choi, Byung-Oh;Lee, Young-Bum;Park, Jong-Won;Nam, Tae-Yeon;Song, Keun-Won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2017
  • Small valves including ball valves, gate valves and butterfly valves have been adopted in the fields of steam power generation, petrochemical industry, carriers, and oil tankers. Butterfly valves have normally been applied to fields where in narrow places installing the existing valves such as gate valves and ball valves have proven difficult due to the surrounding area and the heavier of these valves. Butterfly valves are used to control the mass flow of the piping system under low pressure by rotating the circular disk installed inside. The butterfly valve is benefitted by having simpler structure in which the flow is controlled by rotating the disc circular plate along the center axis, whereas the weight of the valve is light compared to the gate valve and ball valve above-mentioned, as there is no additional bracket supporting the valve body. The manufacturing company needs to acquire the performance and life test equipment, in the case of adopting the improving factors to detect leakage and damage on the seat of the valve disc. However, small companies, which are manufacturing the industrial valves, normally sell their products without the life test, which is the reliability test and environment test, because of financial and manpower problems. Furthermore, the failure mode analysis of the products failed in the field is likewise problematic as there is no system collecting the failure data on sites for analyzing the failures of valves. The analyzing and researching process is not arranged systematically because of the financial problem. Therefore this study firstly tried to obtain information about the failure data from the sites, analyzed the failure mode based on the field data collected from the customers, and then obtained field data using measuring equipment. Secondly, we designed and manufactured the performance and life test equipment which also have the real time monitoring system with the naked eye for the butterfly valves. The concept of this equipment can also be adopted by other valves, such as the ball valve, gate valve, and various others. It can be applied to variously sized valves, ranging from 25 mm to large sized valves exceeding 3000 mm. Finally, this study carries out the life test with square wave pressure, using performance and life test equipment. The performance found out that the failures from the real time monitoring system were good. The results of this study can be expanded to the other valves like ball valves, gate valves, and control valves to find out the failure mode using the real time monitoring system for durability and performance tests.

Investigation on Economical Feasibility for Energy Business of Waste Water Sludge Discharged in 'A' Industrial Complex (A-산업단지 발생 슬러지의 에너지화를 위한 경제성 검토)

  • Byun, Jung-Joo;Lee, Kang-Soo;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.61-74
    • /
    • 2012
  • Industrial complexes in Korea have been vigorously established by economic development plan and development policy of industry in 1960s. Recently, Korean government has promoted Eco Industrial Park (EIP) project to recycle by-products and wastes in industrial park In this study, we analyzed the physical and chemical properties for the sludges discharged from A industrial complex. And we investigated the economic feasibility and environmental impact of sludge to energy facilities. The analysis results indicated that the petrochemical industry were 92% in sludge production, the highest treatment amount was landfill, followed by incineration and recycling and then ocean disposal. Wastewater sludge and process sludge samples are collected and analyzed to use as basic data on economic feasibility and environmental impact. Weighted average heating value of sludge samples was 3,891kcal/kg. Based on this data, installation and operation costs, operation returns of operating the drying facility are estimated, compared with cogeneration facility. And this study examines how the payback period of each simulation(total 8 case) with the important parameter changes. As a result, it was found that what needs the shortest payback period is 3years with connection of drying facility and cogeneration facility based on the government's financial subsidy system.

Role of ChE and ChErs in the 21st century civilization: conceptual understanding of macroeconomic connections embedded in ChE discipline as related to the central theme (paradigm) of the 21st century civilization

  • Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.175-184
    • /
    • 2008
  • Chemical engineering (ChE) was conceived at the close of the 19th century as a new discipline which was designed to support then the newly-emerging industries, oil and petrochemical, by supplying the competent engineers equipped with the pertinent engineering fundamentals and skills. It helped the said industries meet the various demands and ramifications of the new pattern of the human civilization spurred by the advent of automobile transportation at the turn of the 20th century. Now ChE once again is ready to fulfill its societal responsibility as probably the most important discipline and profession in sustaining the $21^{st}$ century human civilization providing the needed engineers (ChErs) and technologies. In this study, it is attempted to analyze the role of ChE and ChErs in this context, focusing on the macroeconomic connections embedded in the discipline that allow us to envision the big pictures of the 21st century civilization where the wellbeing of the mankind invariably hinges on five essential industries, i.e., medical, pharmaceutical, energy, environment and materials. It can be argued that ChE is the only discipline that can encompass simultaneously all those five industries indispensable to sustain the 21 st century human civilization that can be termed the era of "enjoy-healthy-living-longer". It is also believed that the historical mission ChE and ChErs are supposed to fulfill now is even bigger than that they took on a hundred years ago and subsequently accomplished with remarkable success in food, clothing, shelter and entertainment industries introducing various technological innovations. The macroeconomic viewpoints are called upon in this study as were in the 2006 article (Hyun, 2006) but focusing on ChE and ChErs this time to view the connections embedded in ChE as the essential components in understanding the historical nature of the role and responsibility of ChE and ChErs. The new paradigm for ChE is also pondered over together with the frequently-cited technology concepts such as IT, BT, NT, ET and ST which are regarded intimately germane to the characteristics and perspectives of the $21^{st}$ century civilization.

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hae-Seong;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.37-37
    • /
    • 2009
  • Due to their high corrosion resistance and improved mechanical properties super-duplex stainless steel (SDSS) are extensively used in petrochemical plants such as facilities in modern oil platform and off-shore process equipment. It is well known that the best mechanical and corrosion resistance properties of super-duplex stainless steel are obtained with a microstructure having approximately equal amounts of austenite and ferrite. And it is also known that sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride affected adversely their properties. Therefore these phases must be avoided. However, effects of succeeding weld thermal cycle on the change of microstructure of weldment at multi-pass weld were not seldom experimentally researched. Therefore in the present work, the change of weldmetal microstructure and the effect of microstructure on pitting corrosion property at $40^{\circ}C$ by succeeding each weld thermal cycle were researched. The thermal history of root side was measured experimentally and the change of microstructure of root weld according to thermal cycle of each weld layer was evaluated. And the relationship between microstructure of root weld and pitting corrosion property at $40^{\circ}C$ was also investigated. Results of the present work are show as below. 1. The ferrite contents of root weld are gradually reduced by succeeding weld thermal cycle. 2. The 2nd phases such as sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride are increased gradually by succeeding weld thermal cycle. 3. The pitting corrosion was detected in root weld part and weight loss by pitting corrosion is increased in proportional to the time exposed over $600^{\circ}C$ of the root weld. 4. The succeeding weld thermal cycles affect the microstructure of the former weldments and promote the formation of 2nd phases. That is, the more succeeding welds are added, the more 2nd phases are gradually increased. Consequently, it is thougth that this adversely affects pitting corrosion property.

  • PDF

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes (공중합체 폴리이미드를 이용한 기체분리막의 특성평가)

  • Lee, Jung Moo;Lee, Myeong Geon;Kim, Se Jong;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2015
  • We synthesized novel polyimides with high gas permeability and selectivity for application of gas separation membrane. 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) was used to improve gas permeability and 4,4-Methylenedianiline was used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method using Triethylamine and Acetic anhydride and their average molecular weights were over 100,000 g/mol. The glass temperature (Tg) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high Tg over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 10.1 barrer with high $O_2/N_2$ selectivity around 5.3. From this result, we confirm that these membranes have possibility to apply to gas separation membrane.