• Title/Summary/Keyword: Pet image

Search Result 396, Processing Time 0.025 seconds

Definition of Tumor Volume Based on 18F-Fludeoxyglucose Positron Emission Tomography in Radiation Therapy for Liver Metastases: An Relational Analysis Study between Image Parameters and Image Segmentation Methods (간 전이 암 환자의 18F-FDG PET 기반 종양 영역 정의: 영상 인자와 자동 영상 분할 기법 간의 관계분석)

  • Kim, Heejin;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Ji, Young Hoon;Yi, Chul-Young;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.99-107
    • /
    • 2013
  • The surgical resection was occurred mainly in liver metastasis before the development of radiation therapy techniques. Recently, Radiation therapy is increased gradually due to the development of radiation dose delivery techniques. 18F-FDG PET image showed better sensitivity and specificity in liver metastasis detection. This image modality is important in the radiation treatment with planning CT for tumor delineation. In this study, we applied automatic image segmentation methods on PET image of liver metastasis and examined the impact of image factors on these methods. We selected the patients who were received the radiation therapy and 18F-FDG PET/CT in Korea Cancer Center Hospital from 2009 to 2012. Then, three kinds of image segmentation methods had been applied; The relative threshold method, the Gradient method and the region growing method. Based on these results, we performed statistical analysis in two directions. 1. comparison of GTV and image segmentation results. 2. performance of regression analysis for relation between image factor affecting image segmentation techniques. The mean volume of GTV was $60.9{\pm}65.9$ cc and the $GTV_{40%}$ was $22.43{\pm}35.27$ cc, and the $GTV_{50%}$ was $10.11{\pm}17.92$ cc, the $GTV_{RG}$ was $32.89{\pm}36.8$4 cc, the $GTV_{GD}$ was $30.34{\pm}35.77$ cc, respectively. The most similar segmentation method with the GTV result was the region growing method. For the quantitative analysis of the image factors which influenced on the region growing method, we used the standardized coefficient ${\beta}$, factors affecting the region growing method show GTV, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR in order. The result of the region growing (automatic segmentation) method showed the most similar result with the CT based GTV and the region growing method was affected by image factors. If we define the tumor volume by the auto image segmentation method which reflect the PET image parameters, more accurate and consistent tumor contouring can be done. And we can irradiate the optimized radiation dose to the cancer, ultimately.

Effect of MRI Media Contrast on PET/MRI (PET/MRI에 있어 MRI 조영제가 PET에 미치는 영향)

  • Kim, Jae Il;Kim, In Soo;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • Purpose: Integrated PET/MRI has been developed recently has become a lot of help to the point oncologic, neological, cardiological nuclear medicine. By using this PET/MRI, a ${\mu}-map$ is created some special MRI sequence which may be divided parts of the body for attenuation correction. However, because an MRI contrast agent is necessary in order to obtain an more MRI information, we will evaluate to see an effect of SUV on PET image that corrected attenuation by MRI with contrast agent. Materials and Methods: As PET/MRI machine, Biograph mMR (Siemens, Germany) was used. For phantom test, 1mCi $^{18}F-FDG$ was injected in cylinderical uniformity phantom, and then acquire PET data about 10 minutes with VIBE-DIXON, UTE MRI sequence image for attenuation correction. T1 weighted contrast media, 4 cc DOTAREM (GUERBET, FRANCE) was injected in a same phatnom, and then PET data, MRI data were acquired by same methodes. Using this PET, non-contrast MRI and contrast MRI, it was reconstructed attenuation correction PET image, in which we evanuated the difference of SUVs. Additionally, for let a high desity of contrast media, 500 cc 2 plastic bottles were used. We injected $^{18}F-FDG$ with 5 cc DOTAREM in first bottle. At second bottle, only $^{18}F-FDG$ was injected. and then we evaluated a SUVs reconstructed by same methods. For clinical patient study, rectal caner-pancreas cancer patients were selected. we evaluated SUVs of PET image corrected attenuastion by contrast weighted MRI and non-contrast MRI. Results: For a phantom study, although VIBE DIXON MRI signal with contrast media is 433% higher than non-contrast media MRI, the signals intensity of ${\mu}-map$, attenuation corrected PET are same together. In case of high contrast media density, image distortion is appeared on ${\mu}-map$ and PET images. For clinical a patient study, VIBE DIXON MRI signal on lesion portion is increased in 495% by using DOTAREM. But there are no significant differences at ${\mu}-map$, non AC PET, AC-PET image whether using contrast media or not. In case of whole body PET/MRI study, %diff between contras and non contrast MRAC at lung, liver, renal cortex, femoral head, myocardium, bladder, muscle are -4.32%, -2.48%, -8.05%, -3.14%, 2.30%, 1.53%, 6.49% at each other. Conclusion: In integrated PET/MRI, a segmentation ${\mu}-map$ method is used for correcting attenuation of PET signal. although MRI signal for attenuation correciton change by using contrast media, ${\mu}-map$ will not change, and then MRAC PET signal will not change too. Therefore, MRI contrast media dose not affect for attenuation correction PET. As well, not only When we make a flow of PET/MRI protocol, order of PET and MRI sequence dose not matter, but It's possible to compare PET images before and after contrast agent injection.

  • PDF

Evaluate Utility of Thyroid Incidentaloma Discrimination by $^{18}F$-FDG PET/CT Delay Scan Images ($^{18}F$-FDG PET/CT검사에서 지연영상을 이용한 갑상선 우연종 감별의 유용성 평가)

  • Lee, Hyun-Kuk;Yang, Seoung-Oh;Song, Gi-Deok;Song, Chi-Ock;Lee, Gi-Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.184-191
    • /
    • 2008
  • Purpose: To evaluate the degree of malignancy of incident thyroid lesion found in $^{18}F$-FDG PET/CT findings and the usefulness of the method suggested in this study, we applicate the Delay Scan Method that differentiate a false positive benign tumor, inflammation and malignancy, as well as make the criteria of SUV. Materials and Methods: A retrograde study was conducted of 800 patients who were admitted in E hospital to receive $^{18}F$-FDG PET/CT examination. One patient who was diagnosed as primary thyroid cancer and received $^{18}F$-FDG PET/CT examination was excluded. The number of final patients of this study was 799, the reasons of $^{18}F$-FDG PET/CT examination of these patients were follow-up of old cancer or suspicious tumorous lesion in 696 and disease screening in 103. $^{18}F$-FDG PET/CT image photographing was taken in Biograph-Duo made by SIEMENS, after taking normal $^{18}F$-FDG PET/CT image (1 hr) and then 1 hr later we took the thyroid 1 bed-delayed image for the patients who showed abnormal thyroid $^{18}F$-FDG uptake and above 2.0 SUV for 2 minutes every 1 bed. For the patients who showed abnormal thyroid uptake and above 2.0 SUV, 1 hr later, we took a 1 bed-delayed image and then made a comparative study between measured $SUV_{max}$ of 1 hr-abnormal uptake image and that of 2 hr-delayed image. Results and Conclusion: In this $^{18}F$-FDG PET/CT study among the patients who showed incidental $^{18}F$-FDG thyroidal uptake the number of thyroid incidentaloma was 5 (0.63%), all of then showed benign findings. And in the case of incidental $^{18}F$-FDG uptake in thyroid, $SUV_{max}$ variance obtained from 2 hr delayed image can be a indirect criteria in differentiating benign tumor from malignancy and decrease finding error. In the cases found thyroid incidentaloma when 1) $SUV_{max}$ of focal thyroid lesion is above 5.0 and 2) $SUV_{max}$ variance between normal $^{18}F$-FDG PET/CT exam and 2 hr delayed is $1.0{\pm}0.5$, they are suspected as malignancy and confirming biopsy is to be followed. Otherwise, I also think that distinct follow-up PET or CT image study is a reasonable diagnostic method.

  • PDF

Comparison of PET/MR image quality with and without point spread function algorithm according to reconstruction type (재구성 방법(점 확산함수 적용 유무)에 따른 PET/MR 영상 평가)

  • Park, Chan Rok;Moon, Il Sang;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.43-45
    • /
    • 2018
  • Purpose In this study, we evaluated image by applying with and without point spread function algorithm(PSF) according to reconstruction type. Materials and Methods Biograph mMR (Siemens, Germany) was used as PET/MR scanner. For phantom study, we used NEMA IEC Body phantom maintaining radioactivity ratio (hotsphere:background = 8:1). To evaluate phantom image quality, percent contrast recovery and signal to noise ratio (SNR) were used by drawing ROI to 4 spheres. In clinical study, the 20 patients who underwent simultaneous PET/MR was selected and set the ROI at liver. we evaluated images as SNR. Results In the phantom results, The percent contrast recovery applying PSF algoritm was high 5 % compared to without PSF algoritm and SNR was also high 11 %. In the clinical study result, we confirmed that The SNR applying PSF algoritm was high 5 % compared to without PSF algoritm. Conclusion We need to simulate a lot of phantom study and clinical analysis to improve image quality for PET/MRI.

Effect of Gd-based MR contrast agents on CT attenuation of PET/CT for quantitative PET-MRI study

  • Ko, In OK;Park, Ji Ae;Lee, Won Ho;Lim, Sang Moo;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • We evaluate the influence of MR contrast agent on positron emission tomography (PET) image using phantom, animal and human studies. Phantom consisted of 15 solutions with the mixture of various concentrations of Gd-based MR contrast agent and fixed activity of [$^{18}F$]FDG. Animal study was performed using rabbit and two kinds of MR contrast agents. After injecting contrast agent, CT or MRI scanning was performed at 1, 2, 5, 10, and 20 minutes. PET image was obtained using clinical PET/CT scan, and attenuation correction was performed using the all CT images. The values of HU, PET activity and MRI intensity were obtained from ROIs in each phantom and organ regions. In clinical study, patients (n=20) with breast cancer underwent sequential acquisitions of early [$^{18}F$]FDG PET/CT, MRI and delayed PET/CT. In phantom study, as the concentration increased, the CT attenuation and PET activity also increased. However, there was no relationship between the PET activity and the concentration in the clinical dose range of contrast agent. In animal study, change of PET activity was not significant at all time point of CT scan both MR contrast agents. There was no significant change of HU between early and delayed CT, except for kidney. Early and delayed SUV in tumor and liver showed significant increase and decrease, respectively (P<0.05). Under the condition of most clinical study (< 0.2 mM), MR contrast agent did not influence on PET image quantitation.

Nuclear Medicine Physics: Review of Advanced Technology

  • Oh, Jungsu S.
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.81-98
    • /
    • 2020
  • This review aims to provide a brief, comprehensive overview of advanced technologies of nuclear medicine physics, with a focus on recent developments from both hardware and software perspectives. Developments in image acquisition/reconstruction, especially the time-of-flight and point spread function, have potential advantages in the image signal-to-noise ratio and spatial resolution. Modern detector materials and devices (including lutetium oxyorthosilicate, cadmium zinc tellurium, and silicon photomultiplier) as well as modern nuclear medicine imaging systems (including positron emission tomography [PET]/computerized tomography [CT], whole-body PET, PET/magnetic resonance [MR], and digital PET) enable not only high-quality digital image acquisition, but also subsequent image processing, including image reconstruction and post-reconstruction methods. Moreover, theranostics in nuclear medicine extend the usefulness of nuclear medicine physics far more than quantitative image-based diagnosis, playing a key role in personalized/precision medicine by raising the importance of internal radiation dosimetry in nuclear medicine. Now that deep-learning-based image processing can be incorporated in nuclear medicine image acquisition/processing, the aforementioned fields of nuclear medicine physics face the new era of Industry 4.0. Ongoing technological developments in nuclear medicine physics are leading to enhanced image quality and decreased radiation exposure as well as quantitative and personalized healthcare.

Application of PET/CT Volume Rendering Technique to Improve Patient Satisfaction (환자의 만족도 향상을 위한 PET/CT Volume Rendering Technique 적용)

  • Jang, Dong-Gun;Lee, Sang-ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.877-881
    • /
    • 2021
  • Customer satisfaction is a very important factor in the Korean medical system. However, the field of medical imaging is very difficult for the general public to understand. Therefore, in this study, as a way to solve the communication problem between the medical staff and the patient, the PET/CT image was reconstructed using the Volume Rendering technique to increase patient satisfaction. VRT was performed on 360 cancer patients who had undergone PET/CT examination. As a result of a satisfaction survey on 100 patients, all 100 patients showed that the VRT image was superior to the existing image. PET/CT is not a device that observes detailed anatomical shapes, such as CT or MRI, but an image that shows a strong signal of cancer and can easily produce a VRT image. These VRT images can be expressed three-dimensionally so that the general public can easily understand them, so communication between medical staff and patients can be improved more efficiently, and it is expected that the patient's "right to know" will be satisfied.

Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT (PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가)

  • Choong-Woon Lee;Yeon-Wook You;Jong-Woon Mun;Yun-Cheol Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

3D Non-Rigid Registration for Abdominal PET-CT and MR Images Using Mutual Information and Independent Component Analysis

  • Lee, Hakjae;Chun, Jaehee;Lee, Kisung;Kim, Kyeong Min
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.311-317
    • /
    • 2015
  • The aim of this study is to develop a 3D registration algorithm for positron emission tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and functional information, and MR images have high resolution for soft tissue. With the registration technique, the strengths of each modality image can be combined to achieve higher performance in diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized mutual information (NMI)-based global matching and independent component analysis (ICA)-based refinement. In global matching, the field of view of the CT and MR images are adjusted to the same size in the preprocessing step. Then, the target image is geometrically transformed, and the similarities between the two images are measured with NMI. The optimization step updates the transformation parameters to efficiently find the best matched parameter set. In the refinement stage, ICA planes from the windowed image slices are extracted and the similarity between the images is measured to determine the transformation parameters of the control points. B-spline. based freeform deformation is performed for the geometric transformation. The results show good agreement between PET/CT and MR images.

Study on the PET image quality according to various scintillation detectors based on the Monte Carlo simulation

  • Eunsoo Kim;Chanrok Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.129-132
    • /
    • 2023
  • Purpose: Positron emisson tomography (PET) is a crucial medical imaging scanner for the detection of cancer lesions. In order to maintain the improved image quality, it is crucial to apply detectors of superior performance. Therefore, the purpose of this study was to compare PET image quality using Monte Carlo simulation based on the detector materials of BGO, LSO, and LuAP. Materials and Methods: The Geant4 Application for Tomographic Emission (GATE) was used to design the PET detector. Scintillations with BGO, LSO and LuAP were modelled, with a size of 3.95 × 5.3 mm2 (width × height) and 25.0 mm (thickness). The PET detector consisted of 34 blocks per ring and a total of 4 rings. A line source of 1 MBq was modelled and acquired with a radius of 1 mm and length of 20 mm for 20 seconds. The acquired image was reconstructed maximum likelihood expectation maximization with 2 iteration and 10 subsets. The count comparison was carried out. Results and Discussion: The highest true, random, and scatter counts were obtained from the BGO scintillation detector compared to LSO and LuAP. Conclusion: The BGO scintillation detector material indicated excellent performance in terms of detection of gamma rays from emitted PET phantom.