• 제목/요약/키워드: Perturbation Technique

검색결과 272건 처리시간 0.026초

새로운 섭동 추정기를 갖는 슬라이딩 모드 제어기의 설계 (Design of Sliding Mode Controller with New Perturbation Estimator)

  • 함준호;최승복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.782-787
    • /
    • 2004
  • In the conventional sliding mode control technique, a priori knowledge of the bound of external disturbances or/and parameter uncertainties is required to assure control robustness. This, however, may not be easy to obtain in practical situation. This work presents a novel methodology, a sliding mode controller with perturbation estimator, which offers a robust control performance without a priori knowledge about the perturbations (disturbances and parameter uncertainties). The proposed technique is featured by an integrated average value of the imposed perturbation over a certain sampling period. This work also proposes two effective actuating methods of the perturbation estimator: on-off condition and filtering condition. In order to demonstrate the effectiveness of the proposed methodology, a two-link robotic system is adopted and its position control performance is evaluated. In addition, a comparative work between the conventional technique and the proposed one is undertaken.

  • PDF

Exact perturbation analysis technique and optimal buffer storage design for tandem queueing networks

  • Kwon, Wook-Hyun;Park, Hong-Seong;Chung, B.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.469-475
    • /
    • 1991
  • In this paper, we suggest the exact perturbation analysis(Exact_PA) technique with respect to the buffer storage in tandem queueing networks, through which the optimal buffer storage design problem is considered. The discrete event dynamic equations for the departure time of a customer are presented together with the basic properties of Full Out(FO) and No Input(NI) with respect to the buffer storage. The new perturbation rules with respect to the buffer storage are suggested, from which the exact perturbed path can be obtained. The optimal buffer storage problem is presented by introducing a performance measure consisting of the throughput and the buffer storage cost. An optimization algorithm maximizing this performance measure is derived by using the Exact_PA technique. The proposed perturbation analysis technique and the optimization algorithm are validated by numerical examples.

  • PDF

Performance Analysis of Perturbation-based Privacy Preserving Techniques: An Experimental Perspective

  • Ritu Ratra;Preeti Gulia;Nasib Singh Gill
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.81-88
    • /
    • 2023
  • In the present scenario, enormous amounts of data are produced every second. These data also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through and analyzing massive volumes of data to find usable information. Preserving personal data during data mining has become difficult, thus privacy-preserving data mining (PPDM) is used to do so. Data perturbation is one of the several tactics used by the PPDM data privacy protection mechanism. In Perturbation, datasets are perturbed in order to preserve personal information. Both data accuracy and data privacy are addressed by it. This paper will explore and compare several perturbation strategies that may be used to protect data privacy. For this experiment, two perturbation techniques based on random projection and principal component analysis were used. These techniques include Improved Random Projection Perturbation (IRPP) and Enhanced Principal Component Analysis based Technique (EPCAT). The Naive Bayes classification algorithm is used for data mining approaches. These methods are employed to assess the precision, run time, and accuracy of the experimental results. The best perturbation method in the Nave-Bayes classification is determined to be a random projection-based technique (IRPP) for both the cardiovascular and hypothyroid datasets.

섭동 추정기를 갖는 슬라이딩 모드 제어기의 성능 평가 (Performance Evaluation of Sliding Mode Controller with Perturbation Estimator)

  • 최승복;함준호;한영민
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1859-1865
    • /
    • 2002
  • In the conventional sliding mode control technique, a priori knowledge of the bound of external disturbances or/and parameter uncertainties is required to assure control robustness. This, however, may not be easy to obtain in practical situation. This work presents a novel methodology, a sliding mode controller with perturbation estimator, which offers a robust control performance without a priori knowledge about the perturbations (disturbances and parameter uncertainties). The proposed technique is featured by an integrated average value of the imposed perturbation over a certain sampling period. In order to demonstrate the effectiveness of the proposed methodology, a two-link robotic system is adopted and its position control performance is evaluated. In addition, a comparative work between the conventional technique and the proposed one is undertaken.

Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용 (Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control)

  • 남윤주;이육형;박명관
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

시스템 축소기법이 적용된 역섭동법을 이용한 손상탐지 (System Condensation Technique-Based Inverse Perturbation Method of Damage Detection)

  • 최영재;이우식
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.98-104
    • /
    • 2002
  • 본 연구에서는 역섭동법을 이용한 손상탐지의 효율을 개선하는 목적으로 시스템 축소기법을 사용하였다. 이 방법은 손상탐지의 미측정 자유도를 측정된 자유도로 변환하여 역섭동법의 계산효율이 향상되는 장점이 있으나, 부정확한 자유도의 변환으로 수치적인 안정성이 저하될 수 있다. 따라서 자유도 변환식을 수치해법 과정에서 반복적으로 개선하는 방법과, 매우 정확한 accelerated improved reduced system (AIRS) 축소법의 사용으로 역섭동법의 수치적 불안정성을 해결하였다.

비대칭 외판원문제에서 Out-of-Kilter호를 이용한 Perturbation (Perturbation Using Out-of-Kilter Arc of the Asymmetric Traveling Salesman Problem)

  • 권상호
    • 한국경영과학회지
    • /
    • 제30권2호
    • /
    • pp.157-167
    • /
    • 2005
  • This paper presents a new perturbation technique for developing efficient iterated local search procedures for the asymmetric traveling salesman problem(ATSP). This perturbation technique uses global information on ATSP instances to speed-up computation and to improve the quality of the tours found by heuristic method. The main idea is to escape from a local optima by introducing perturbations on the out-of-kilter arcs in the problem instance. For a local search heuristic, we use the Kwon which finds optimum or near-optimum solutions by applying the out-of-kilter algorithm to the ATSP. The performance of our algorithm has been tested and compared with known method perturbing on randomly chosen arcs. A number of experiments has been executed both on the well-known TSPLIB instances for which the optimal tour length is known, and on randomly generated Instances. for 27 TSPLIB instances, the presented algorithm has found optimal tours on all instances. And it has effectively found tours near AP lower bound on randomly generated instances.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

구조물 손상의 추정을 위한 Inverse Modal Perturbation 기법 (Estimation of Structural Damages by Inverse Modal Perturbation Method)

  • 민진기;김형기;홍규선;윤정방
    • 대한토목학회논문집
    • /
    • 제10권4호
    • /
    • pp.35-42
    • /
    • 1990
  • 구조물의 손상도를 Inverse Modal Perturbation 기법을 이용하여 추정하는 방법에 대하여 연구하였다. 손상된 구조물에 대하여 측정된, 제한된 수위 고유진동수와 고유진동모우드로 이루어진 Perturbation 식에 최적화기법을 적용하여, 손상된 구조물의 부재강성의 감소량을 추정하였다. 예제해석은 기둥모형과 트러스구조의 여러 가지 경우에 대하여 수행하였는데, 가정한 손상도에 따른 자유진동특성의 변화량을 바탕으로 측정한 손상도를 가정한 값과 비교하는 수치모의 실험방법을 통하여 본 기법의 효율성을 입증하였다.

  • PDF

섭동법에 의한 면진구조계의 동적 재해석 (Dynamic Reanalysis of Base-Isolated Systems Using a Perturbation Technique)

  • 김희덕
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.167-175
    • /
    • 2001
  • In this study, a general perturbation method is presented to reanalysis dynamic response of base-isolated systems. The perturbation is expanded to general order and which provide the formulation of perturbed solutions. in which eigensolutions of non-modified system are treated as unperturbed solutions. The accuracy of present method is tested using a 2-DOF system with isolator, where the stiffness and damping coefficients of isolator are changed, respectively, The reanalyzed eigensolutions and response using perturbed solutions are successfully approached to exact ones after just first perturbation. Supposing the practical criterion as ${\pm}5%$ error, the modification range of -50%~30% from original system can be allowed for the first order perturbation. Using higher order solutions, the applicable range will be wide.

  • PDF