• Title/Summary/Keyword: Persulfate Activation

Search Result 16, Processing Time 0.02 seconds

Oxidation of Chloroethenes by Heat-Activated Persulfate (과황산의 열적활성화 및 염소계용제의 산화분해)

  • Zhang, Hailong;Kwon, Hee-Won;Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1201-1208
    • /
    • 2017
  • Oxidative degradation of chlorinated ethenes was carried out using heat-activated persulfate. The activation rate of persulfate was dependent on the temperature and the activation reaction rate could be explained based on the Arrhenius equation. The activation energy of persulfate was 19.3 kcal/mol under the assumption that the reaction between the sulfate radical and tricholoroethene (TCE) is very fast. Activation could be achieved at a moderate temperature, so that the adverse effects due to high temperature in the soil environment were mitigated. The reaction rate of TCE was directly proportional to the concentration of persulfate, indicating that the remediation rate can be controlled by the concentration of the injected persulfate. The solution was acidized after the oxidation, and this was dependent on the oxidation temperature. The consumption rate of persulfate was high in the presence of the target organic, but the self-decomposition rate became very low as the target was completely removed.

Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment (Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가)

  • Jo, Jae Hyun;Yoon, Seong-Eun;Kim, Jae-Moon;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

Control of Persulfate Activation Rate and Improvement of Active Species Transfer Rate Using Selenium-modified ZVI (셀레늄으로 개질된 영가철을 이용한 과황산 활성화 속도 조절 및 활성종 전달율 향상에 관한 연구)

  • Hee-won Kwon;Hae-Seong Park;In-seong Hwang;Jeong-Jin Kim;Young-Hun Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • The advanced oxidation treatment using persulfate and zero-valent iron (ZVI) has been evaluated as a very effective technology for remediation of soil and groundwater contamination. However, the high rate of the initial reaction of persulfate with ZVI causes over-consumption of an injected persulfate, and the excessively generated active species show a low transfer rate to the target pollutant. In this study, ZVI was modified using selenium with very low reactivity in the water environment with the aim of controlling the persulfate activation rate by controlling the reactivity of ZVI. Selenium-modified ZVI (Se/ZVI) was confirmed to have a selenium coating on the surface through SEM/EDS analysis, and low reductive reactivity to trichlroethylene (TCE) was observed. As a result of inducing the persulfate activation using the synthesized Se/ZVI, the persulfated consumption rate was greatly reduced, and the decomposition rate of the model contaminant, anisole, was also reduced in proportion. However, the final decomposition efficiency was rather increased, which seems to be the result of preventing persulfate over-consumption. This is because the transfer efficiency of the active species (SO4-∙) of persulfate to the target contaminant has been improved. Selenium on the surface of Se/ZVI was not significantly dissolved even under oxidation conditions by persulfate, and most of it was present in the form of Se/ZVI. It was confirmed that the persulfate activation rate could be controlled by controlling the reactivity of ZVI, which could greatly contribute to the improvement of the persulfate oxidation efficiency.

The Effects of Reaction Conditions and NOM on Persulfate Oxidation of RDX (Persulfate에 의한 RDX 산화시 반응조건과 NOM의 영향)

  • Wu, Dabo;Bae, Bum-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.723-730
    • /
    • 2011
  • In this experiment, persulfate, a strong oxidant for ISCO (In-Situ Chemical Oxidation) was used to degraded RDX in artificial ground water at ambient temperature. Results of RDX degradation by persulfate in a batch reactor showed that the oxidation reaction was pseudo first order with estimated Ea (activation energy) of $1.14{\times}10^2kJ/mol$ and the rate was increased with the increase of reaction temperature. The oxidation of RDX by persulfate increased slightly with the increase of initial solution pH from 4 to 8. The RDX oxidation rate increased 13 times at pH 10 compared with that at pH 4, however, alkaline hydrolysis was found to be the main reaction of RDX degradation rather than oxidation. The study also showed that the oxidation rate of RDX by persulfate was linearly dependent upon the molar ratios of persulfate to RDX from 5 : 1 up to 100 : 1, with a proportion constant of $4{\times}10^{-4}$ ($min^{-1}$/molar ratio) at $70^{\circ}C$. While NOM (Natural Organic Matter) exerted negative effects on the oxidation rate of RDX by persulfate, with a proportion constant of $1.21{\times}10^{-4}$ ($min^{-1}{\cdot}L/mg-NOM$) at $70^{\circ}C$ and persulfate/NOM molar ratio of 10/1. The decrease in RDX oxidation rate was linearly dependent upon the added NOM concentration. However, the estimated activation energy in the presence of 20 mg-NOM/L was within 3.3% error compared to that without NOM, which implies the addition of NOM does not alter intrinsic oxidation reaction.

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation (녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거)

  • Jang, Hee-Jin;Kwon, Gihoon;Yoon, Kwangsuk;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.

Degradation of TCE by Persulfate Oxidation with Various Activation Methods (heat, Fe2+, and UV) for ex-situ Chemical Oxidation Processes (Ex-situ 화학적 산화처리 적용을 위하여 다양하게 활성화(heat, Fe2+, UV)된 persulfate를 이용한 TCE 분해에 대한 연구)

  • Kim, Han-Sol;Do, Si-Hyun;Park, Ki-Man;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.43-51
    • /
    • 2012
  • Rreactivity of persulfate (PS) for oxidation of TCE under various conditions such as heat, $Fe^{2+}$, and UV was investigated. It was found that degradation rate of TCE increased with increasing temperature from 15 to $35^{\circ}C$. At pH 7.0, the rate constants (k) at 15, 25, 30, and $35^{\circ}C$ were 0.07, 0.30, 0.74, and $1.30h^{-1}$, respectively. For activation by $Fe^{2+}$, removal efficiency of TCE increased with increasing $Fe^{2+}$ concentration from 1.9 mM to 11 mM. The maximum removal efficiency of TCE was approximately 85% when pH of the solution dropped from 7.0 to 2.5. Degradation of TCE by UV-activated PS was the most effective, showing that the degradation rate of TCE increased with inreasing PS dosage; the rate constants (k) at 0.5, 2.5, and 10 mM were 34.2, 40.5, and $55.9h^{-1}$, respectively. Our results suggest that PS activation by UV/PS process could be the most effective in activation processes tested for TCE degradation. For oxidation process by PS, however, pH should be observed and adjusted to neutral conditions (i.e., 5.8-8.5) if necessary.

Improving the Reactivity and Harmlessness of Recalcitrant Contaminants by Reduction-oxidation-linked Process (환원-산화 연계처리를 통한 니트로벤젠의 반응성 향상 및 무해화 연구)

  • Kwon, Hee-Won;Hwang, Inseong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1205-1211
    • /
    • 2020
  • In this study, the applicability of reduction-oxidation-linked treatment was evaluated for nitrobenzene and a by-product by analyzing the reaction kinetics. Nitrobenzene showed very low reactivity to persulfate that was activated using various methods. Nitrobenzene effectively reacted through the reduction process using Zero-Valent Iron (ZVI). However, aniline, a toxic substance, was produced as a by-product. Reduction-oxidation-linked treatment is a method that can allow the oxidative degradation of aniline after reducing nitrobenzene to aniline. The experimental results show improved reactivity and complete decomposition of the by-product. Improved reactivity and decomposition of the by-product were observed even under conditions in which the reduction-oxidation reaction was induced simultaneously. No activator was injected for persulfate activation in the process of reducing oxidant linkage, and the activation reaction was induced by ferrous iron eluted from the ZVI. This indicates that this method can be implemented relatively simply.

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron (과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화)

  • Kim, Cheolyong;Ahn, Jun-Young;Kim, Tae Yoo;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.17-25
    • /
    • 2017
  • The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.