• Title/Summary/Keyword: Persulfate

Search Result 165, Processing Time 0.024 seconds

작업환경을 위한 TLV의 근거 - PERSULFATES

  • Kim, Chi-Nyeon
    • 월간산업보건
    • /
    • s.291
    • /
    • pp.12-16
    • /
    • 2012
  • 과황산암모늄 (ammonium persulfate), 과황산칼륨(potassium persulfate), 과황산나트륨(sodium persulfate)에 대한 작업 노출기준은 perfulfate ($S_2O_8$) 형태로서 0.1 $mg/m^3$(TLV-TWA)으로 권고하였다. 이 기준치는 피부 자극 및 피부염을 포함한 피부 또는 기관지계 관련 질환 발생을 최소화하기 위해 설정되었다. 몇몇 연구 자료에 의하면 이 물질들에 노출되면 폐 자극 증세도 나타난다고 보고되고 있다. 또한 이 TLV는 전신독성 측면보다는 자극 영향 측면에 근거를 두어 제안하였다. "감작제(SEN)", 발암성, TLV-STEL에 대한 설정은 유용한 자료의 부족으로 아직 권고하지 않고 있다.

  • PDF

Sensitized Photodegradation of Benzene in Water

  • Kim, Young-Hee;Ahn, Sang-Jun;Park, Hyun-Geoun;Lee, Chun-Sik
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.79-84
    • /
    • 2000
  • The photodegradation of benzene was studied in an aqueous solution using a medium pressure Hg-lamp. In this study, persulfate, nitrate, nitrite, chloride, and sulfate ions were all tested as sensitizers. The persulfate, nitrate, and nitrite ions exhibited a sensitizing effect in the photodegradation of benzene, whereas no detectable effects were observed with the sulfate and chloride ions. When nitrite ions were used as the sensitizer, the photodegradation of benzene ran through a maximum value and thereafter decreased with an increasing nitrite concentration. The resulting build-up of nitrite ions seemed to scavenge the hydroxyl radicals. When nitrite ions were present along with persulfate ions, the photodegradation of benzene was inhibited.

  • PDF

Effects of Methacrylamide Treatment on Silk Fibers I. Effects of Reaction Conditions on Weight Increase of Silk Fibers (견섬유에 대한 메타크릴아미드의 처리효과 I. 반응조건에 따른 견섬유의 무게 증가)

  • 신태섭;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.2
    • /
    • pp.82-86
    • /
    • 1991
  • The treatments of methacrylamide on silk fibers were studied in aqueous solution using potassium persulfate as an initiator, and suitable conditions of reaction were determined for weighing of silk fibers. The results obtained were summarized as follows ; The weight of MAA-treated silk fibers increased with monomer concentration. The adequate concentration of potassium persulfate was found to be 1.7%. Maximum weight increase was shown at initial pH 3.8 of reaction liquor controlled by buffer solution.

  • PDF

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

A Continuous Process of Persulfate Oxidation and Citric acid Washing for the Treatment of Complex-Contaminated Soil Containing Total Recoverable Petroleum Hydrocarbons and Heavy Metals (TRPHs - 중금속 복합오염토양의 동시 처리를 위한 과황산 산화 - 구연산 세척 혼성공정 개발)

  • Yoon, Na Kyeong;Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • A continuous process of persulfate oxidation and citric acid washing was investigated for ex-situ remediation of complex contaminated soil containing total recoverable petroleum hydrocarbons (TRPHs) and heavy metals (Cu, Pb, and Zn). The batch experiment results showed that TRPHs could be degraded by $Fe^{2+}$ activated persulfate oxidation and that heavy metals could be removed by washing with citric acid. For efficient remediation of the complex contaminated soil, two-stage and three-stage processes were evaluated. Removal efficiency of the two-stage process (persulfate oxidation - citric acid washing) was 83% for TRPHs and 49%, 53%, 24% for Cu, Zn, and Pb, respectively. To improve the removal efficiency, a three-stage process was also tested; case A) water washing - persulfate oxidation - citirc acid washing and case B) persulfate oxidation - citric acid washing (1) - citric acid washing (2). In case A, 63% of TRPHs, 73% of Cu, 60% of Zn, and 55% of Pb were removed, while the removal efficiencies of TRPHs, Cu, Pb, and Zn were 24%, 68%, 62%, and 59% in case B, respectively. The results indicated that case A was better than case B. The three-stage process was more effective than the two-stage process for the remediation of complex-contaminated soil in therms of overall removal efficiency.

A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode (과황산계 산화제에 따른 폐LiFePO4 양극재에서 리튬의 침출 효과와 선택적 회수에 대한 연구)

  • Kim, Hee-Seon;Kim, Dae-Weon;Jang, Dae-Hwan;Kim, Boram;Jin, Yun-Ho;Chae, Byung-Man;Lee, Sang-Woo
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.40-48
    • /
    • 2022
  • In waste lithium iron phosphate (LFP) batteries, the cathode material contains approximately 4% lithium. Recycling the constituent elements of batteries is important for resource circulation and for mitigating the environmental pollution. Li contained in the waste LFP cathode powder was selectively leached using persulfate-based oxidizing agents, such as sodium persulfate, potassium persulfate, and ammonium persulfate. Leaching efficiency and waste LFP powder properties were compared and analyzed. Pulp density was used as a variable during leaching, which was performed for 3 h under each condition. The leaching efficiency was calculated using the inductively coupled plasma (ICP) analysis of the leachate. All types of persulfate-based oxidizing agents used in this study showed a Li leaching efficiency over 92%. In particular, when leaching was performed using (NH4)2S2O8, the highest Li leaching percentage of 93.3% was observed, under the conditions of 50 g/L pulp density and an oxidizing agent concentration of 1.1 molar ratio.

Effect of the Presence of Soil on the Ferrous Catalyzed Sodium Persulfate Oxidation of Naphthalene (과황산나트륨과 제일철 촉매를 이용한 나프탈렌 산화 시 토양이 미치는 영향 평가)

  • Han, Dai-Sung;Yun, Yeo-Bog;Ko, Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Batch tests were carried out to examine the influence of the presence of soil and Fe(II) sorption capacity of soil on the ferrous catalyzed sodium persulfate oxidation for the destruction of organic pollutants in the application of in-situ chemical oxidation. Laboratory column tests were also conducted to investigate the transport of oxidant and catalyst in contaminated groundwater. Test results proved that Fe(II) was adsorbed on soil surface, and thus soil behaved as a heterogeneous catalyst, enhancing the naphthalene removal rate up to 50%. Column tests that were conducted with and without dissolved Fe(II) showed that naphthalene removal ratio were 24% and 25%, respectively. The removal efficiency was not enhanced with dissolved Fe(II), since the dissolved Fe(II) flew out of the column as the oxidant progressively injected into the column saturated with Fe(II). It indicates that the injected oxidant could not interact with dissolved Fe(II). But target organic pollutant was degraded in soil column system, implying that sulfate radical was produced by the reaction of dissolved persulfate with Fe(II) adsorbed on soil.

Performance Evaluation of the Multistage Soil Washing Efficiency for Remediation of Mixed-contaminated Soil with Oil and Heavy Metals (유류/중금속 복합오염토양 정화를 위한 다단 토양세척 효율평가)

  • Kim, Daeho;Park, Kwangjin;Cho, Sungheui;Kim, Chikyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • In typical remediation practices, separate washing systems have to be applied to clean up the soils contaminated with both oil and heavy metals. In this study, we evaluated the efficiency of successive two-stage soil washing in removal of mixed-contaminants from soil matrix. Two-stage soil washing experiments were conducted using different combinations of chemical agent: 1) persulfate oxidation, followed by organic acid washing, and 2) Fenton oxidation, followed by inorganic acid washing. Persulfate oxidation-organic acid washing efficiently removed both organic and inorganic contaminants to meet the regulatory soil quality standard. The average removal rates of total petroleum hydrocarbons (TPH), Cu, Pb, and Zn were 88.9%, 82.2%, 77.5%, and 66.3% respectively, (S/L 1:10, reaction time 1 h, persulfate 0.5 M, persulfate:activator 3:1, citric acid 2 M). Fenton oxidation-inorganic acid washing also gave satisfactory performances to give 89%, 80.9%, 87.1%, and 67.7% removal of TPH, Cu, Pb, and Zn, respectively (S/L 1:10, reaction time 1 hr, hydrogen peroxide 0.3 M, hydrogen peroxide:activator 5:1, inorganic acid 1 M).

Oxidation of Endocrine Disrupting Chemicals Using Sodium Persulfate (과황산나트륨을 이용한 내분비계장애물질 산화제거)

  • Lim, Chan Soo;Yun, Yeo Bog;Kim, Do Gun;Ko, Seok Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.609-617
    • /
    • 2013
  • The objective of this study was to evaluate the oxidation method to remove endocrine disrupting chemicals in reverse osmosis(RO) retentate for the reuse of wastewater effluent. Oxidation of organic pollutants was induced by the persulfate catalyzed by Fe(II). Affecting factors such as initial pH and ionic strength on the Fe(II) catalyzed persulfate oxidation were evaluated. $17{\alpha}$-ethynylestradiol (EE2) degradation efficiency decreased as pH and ionic strength increased. However, the efficiency increased as chloride ion concentration increased due to the influence of radical transfer.