• Title/Summary/Keyword: Personalized recommendation

Search Result 410, Processing Time 0.027 seconds

A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem (온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구)

  • Qinglong Li;Shibo Cui;Byunggyu Shin;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.51-75
    • /
    • 2021
  • Global e-commerce websites offer personalized recommendation services to gain sustainable competitiveness. Existing studies have offered personalized recommendation services using quantitative preferences such as ratings. However, offering personalized recommendation services using only quantitative data has raised the problem of decreasing recommendation performance. For example, a user gave a five-star rating but wrote a review that the user was unsatisfied with hotel service and cleanliness. In such cases, has problems where quantitative and qualitative preferences are inconsistent. Recently, a growing number of studies have considered review data simultaneously to improve the limitations of existing personalized recommendation service studies. Therefore, in this study, we identify review and rating mismatches and build a new user profile to offer personalized recommendation services. To this end, we use deep learning algorithms such as CNN, LSTM, CNN + LSTM, which have been widely used in sentiment analysis studies. And extract sentiment features from reviews and compare with quantitative preferences. To evaluate the performance of the proposed methodology in this study, we collect user preference information using real-world hotel data from the world's largest travel platform TripAdvisor. Experiments show that the proposed methodology in this study outperforms the existing other methodologies, using only existing quantitative preferences.

Semantics Environment for U-health Service driven Naive Bayesian Filtering for Personalized Service Recommendation Method in Digital TV (디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법)

  • Kim, Jae-Kwon;Lee, Young-Ho;Kim, Jong-Hun;Park, Dong-Kyun;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.81-90
    • /
    • 2012
  • For digital TV, the recommendation of u-health personalized service of semantic environment should be done after evaluating individual physical condition, illness and health condition. The existing recommendation method of u-health personalized service of semantic environment had low user satisfaction because its recommendation was dependent on ontology for analyzing significance. We propose the personalized service recommendation method based on Naive Bayesian Classifier for u-health service of semantic environment in digital TV. In accordance with the proposed method, the condition data is inferred by using ontology, and the transaction is saved. By applying naive bayesian classifier that uses preference information, the service is provided after inferring based on user preference information and transaction formed from ontology. The service inferred based on naive bayesian classifier shows higher precision and recall ratio of the contents recommendation rather than the existing method.

Application of Multidimensional Scaling Method for E-Commerce Personalized Recommendation (전자상거래 개인화 추천을 위한 다차원척도법의 활용)

  • Kim Jong U;Yu Gi Hyeon;Easley Robert F.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose personalized recommendation techniques based on multidimensional scaling (MDS) method for Business to Consumer Electronic Commerce. The multidimensional scaling method is traditionally used in marketing domain for analyzing customers' perceptional differences about brands and products. In this study, using purchase history data, customers in learning dataset are assigned to specific product categories, and after then using MDS a positioning map is generated to map product categories and alternative advertisements. The positioning map will be used to select personalized advertisement in real time situation. In this paper, we suggest the detail design of personalized recommendation method using MDS and compare with other approaches (random approach, collaborative filtering, and TOP3 approach)

  • PDF

L-PRS: A Location-based Personalized Recommender System

  • Kim, Taek-hun;Song, Jin-woo;Yang, Sung-bong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.113-117
    • /
    • 2003
  • As the wireless communication technology advances rapidly, a personalization technology can be incorporated with the mobile Internet environment, which is based on location-based services to support more accurate personalized services. A location-based personalized recommender system is one of the essential technologies of the location-based application services, and is also a crucial technology for the ubiquitous environment. In this paper we propose a framework of a location-based personalized recommender system for the mobile Internet environment. The proposed system consists of three modules the interface module, the neighbor selection module and the prediction and recommendation module. The proposed system incorporates the concept of the recommendation system in the Electronic Commerce along with that of the mobile devices for possible expansion of services on the mobile devices. Finally a service scenario for entertainment recommendation based on the proposed recommender system is described.

  • PDF

Contents Recommendation Search System using Personalized Profile on Semantic Web (시맨틱 웹에서 개인화 프로파일을 이용한 콘텐츠 추천 검색 시스템)

  • Song, Chang-Woo;Kim, Jong-Hun;Chung, Kyung-Yong;Ryu, Joong-Kyung;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.318-327
    • /
    • 2008
  • With the advance of information technologies and the spread of Internet use, the volume of usable information is increasing explosively. A content recommendation system provides the services of filtering out information that users do not want and recommending useful information. Existing recommendation systems analyze the records and patterns of Web connection and information demanded by users through data mining techniques and provide contents from the service provider's viewpoint. Because it is hard to express information on the users' side such as users' preference and lifestyle, only limited services can be provided. The semantic Web technology can define meaningful relations among data so that information can be collected, processed and applied according to purpose for all objects including images and documents. The present study proposes a content recommendation search system that can update and reflect personalized profiles dynamically in semantic Web environment. A personalized profile is composed of Collector that contains the characteristics of the profile, Aggregator that collects profile data from various collectors, and Resolver that interprets profile collectors specific to profile characteristic. The personalized module helps the content recommendation server make regular synchronization with the personalized profile. Choosing music as a recommended content, we conduct an experience on whether the personalized profile delivers the content to the content recommendation server according to a service scenario and the server provides a recommendation list reflecting the user's preference and lifestyle.

A personalized exercise recommendation system using dimension reduction algorithms

  • Lee, Ha-Young;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.19-28
    • /
    • 2021
  • Nowadays, interest in health care is increasing due to Coronavirus (COVID-19), and a lot of people are doing home training as there are more difficulties in using fitness centers and public facilities that are used together. In this paper, we propose a personalized exercise recommendation algorithm using personalized propensity information to provide more accurate and meaningful exercise recommendation to home training users. Thus, we classify the data according to the criteria for obesity with a k-nearest neighbor algorithm using personal information that can represent individuals, such as eating habits information and physical conditions. Furthermore, we differentiate the exercise dataset by the level of exercise activities. Based on the neighborhood information of each dataset, we provide personalized exercise recommendations to users through a dimensionality reduction algorithm (SVD) among model-based collaborative filtering methods. Therefore, we can solve the problem of data sparsity and scalability of memory-based collaborative filtering recommendation techniques and we verify the accuracy and performance of the proposed algorithms.

Proposal for User-Product Attributes to Enhance Chatbot-Based Personalized Fashion Recommendation Service (챗봇 기반의 개인화 패션 추천 서비스 향상을 위한 사용자-제품 속성 제안)

  • Hyosun An;Sunghoon Kim;Yerim Choi
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.50-62
    • /
    • 2023
  • The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.

Sparsity Effect on Collaborative Filtering-based Personalized Recommendation (협업 필터링 기반 개인화 추천에서의 평가자료의 희소 정도의 영향)

  • Kim, Jong-Woo;Bae, Se-Jin;Lee, Hong-Joo
    • Asia pacific journal of information systems
    • /
    • v.14 no.2
    • /
    • pp.131-149
    • /
    • 2004
  • Collaborative filtering is one of popular techniques for personalized recommendation in e-commerce sites. An advantage of collaborative filtering is that the technique can work with sparse evaluation data to predict preference scores of new alternative contents or advertisements. There is, however, no in-depth study about the sparsity effect of customer's evaluation data to the performance of recommendation. In this study, we investigate the sparsity effect and hybrid usages of customers' evaluation data and purchase data using an experiment result. The result of the analysis shows that the performance of recommendation decreases monotonically as the sparsity increases, and also the hybrid usage of two different types of data; customers' evaluation data and purchase data helps to increase the performance of recommendation in sparsity situation.

A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents (대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.2
    • /
    • pp.89-104
    • /
    • 2007
  • This research attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of existing studios and commercial contents for recommendation systems, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time. This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. And the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

Personalized Information Delivery Methods for Knowledge Portals (지식포탈을 위한 개인화 지식 제공 방안)

  • Lee Hong Joo;Kim Jong Woo;Kim Gwang Rae;Ahn Hyung Jun;Kwon Chul Hyun;Park Sung Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.45-57
    • /
    • 2005
  • In order to provide personalized knowledge recommendation services, most web portals for organizational knowledge management use category or keyword information that portal users explicitly express interests in. However, it is usually difficult to collect correct preference data for all users with this approach, and, moreover, users' preferences may easily change over time, which results In outdated user profiles and impaired recommendation qualify. In order to address this problem, this paper suggests knowledge recommendation methods for portals using user profiles that are automatically constructed from users' activities such as posting or uploading of articles and documents. The result of our experiment shows that the Proposed method can provide equivalent performance with the manual category or keyword selection method.

  • PDF