• Title/Summary/Keyword: Personalized Learning model

Search Result 111, Processing Time 0.021 seconds

The Study on Goal Driven Personalized e-Learning System Design Based on Modified SCORM Standard (수정된 SCORM 표준을 적용한 목표지향 개인화 이러닝 시스템 설계 연구)

  • Lee, Mi-Joung;Park, Jong-Sun;Kim, Ki-Seok
    • Journal of Information Technology Services
    • /
    • v.7 no.4
    • /
    • pp.231-246
    • /
    • 2008
  • This paper suggests an e-learning system model, a goal-driven personalized e-learning system, which increase the effectiveness of learning. An e-learning system following this model makes the learner choose the learning goal. The learner's choice would lead learning. Therefore, the system enables a personalized adaptive learning, which will raise the effectiveness of learning. Moreover, this paper proposes a SCORM standard, which modifies SCORM 2004 that has been insufficient to implement the "goal driven personalized e-learning system." We add a data model representing the goal that motivates learning, and propose a standard for statistics on learning objects usage. We propose each standard for contents model and sequencing information model which are parts of "goal driven personalized e-learning system." We also propose that manifest file should be added for the standard for contents model, and the file which represents the information of hierarchical structure and general learning paths should be added for the standard for sequencing information model. As a result, the system could sequence and search learning objects. We proposed an e-learning system and modified SCORM standards by considering the many factors of adaptive learning. We expect that the system enables us to optimally design personalized e-learning system.

A Study on the Development of Adaptive Learning System through EEG-based Learning Achievement Prediction

  • Jinwoo, KIM;Hosung, WOO
    • Fourth Industrial Review
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose - By designing a PEF(Personalized Education Feedback) system for real-time prediction of learning achievement and motivation through real-time EEG analysis of learners, this system provides some modules of a personalized adaptive learning system. By applying these modules to e-learning and offline learning, they motivate learners and improve the quality of learning progress and effective learning outcomes can be achieved for immersive self-directed learning Research design, data, and methodology - EEG data were collected simultaneously as the English test was given to the experimenters, and the correlation between the correct answer result and the EEG data was learned with a machine learning algorithm and the predictive model was evaluated.. Result - In model performance evaluation, both artificial neural networks(ANNs) and support vector machines(SVMs) showed high accuracy of more than 91%. Conclusion - This research provides some modules of personalized adaptive learning systems that can more efficiently complete by designing a PEF system for real-time learning achievement prediction and learning motivation through an adaptive learning system based on real-time EEG analysis of learners. The implication of this initial research is to verify hypothetical situations for the development of an adaptive learning system through EEG analysis-based learning achievement prediction.

Class-based Analysis and Design to Realize a Personalized Learning System (맞춤형 학습 실현을 위한 클래스 기반 시스템 분석 및 설계)

  • Suah Choe;Eunjoo Lee;Woosung Jung
    • Journal of Industrial Convergence
    • /
    • v.22 no.2
    • /
    • pp.13-22
    • /
    • 2024
  • In the current epoch of educational technology (EdTech), the realization of a personalized learning system has become increasingly important. This is due to the growing diversity of today's learners in terms of backgrounds, learning styles, and abilities. Traditional educational methods that deliver the same content to all learners often fail to take this diversity into account. This paper identifies models that comprehensively analyze learners' characteristics, interests, and learning histories to meet the growing demand for learner-centered education. Based on these models, we have designed a personalized learning system. This system is structured to support autonomous learning tailored to the learner's current level and goals by identifying strengths and weaknesses based on the learner's learning history. In addition, the system is designed to extend necessary learning elements without changing its architecture. Through this research, we can identify the essential foundations for constructing a user-tailored learning system and effectively develop a system architecture to support personalized learning.

Affection-enhanced Personalized Question Recommendation in Online Learning

  • Mingzi Chen;Xin Wei;Xuguang Zhang;Lei Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3266-3285
    • /
    • 2023
  • With the popularity of online learning, intelligent tutoring systems are starting to become mainstream for assisting online question practice. Surrounded by abundant learning resources, some students struggle to select the proper questions. Personalized question recommendation is crucial for supporting students in choosing the proper questions to improve their learning performance. However, traditional question recommendation methods (i.e., collaborative filtering (CF) and cognitive diagnosis model (CDM)) cannot meet students' needs well. The CDM-based question recommendation ignores students' requirements and similarities, resulting in inaccuracies in the recommendation. Even CF examines student similarities, it disregards their knowledge proficiency and struggles when generating questions of appropriate difficulty. To solve these issues, we first design an enhanced cognitive diagnosis process that integrates students' affection into traditional CDM by employing the non-compensatory bidimensional item response model (NCB-IRM) to enhance the representation of individual personality. Subsequently, we propose an affection-enhanced personalized question recommendation (AE-PQR) method for online learning. It introduces NCB-IRM to CF, considering both individual and common characteristics of students' responses to maintain rationality and accuracy for personalized question recommendation. Experimental results show that our proposed method improves the accuracy of diagnosed student cognition and the appropriateness of recommended questions.

Developing a Consciousness of Copyright for Elementary School Students through the Customized Educational Program (맞춤형 교수-학습활동을 통한 초등학생 저작권 보호의식 함양)

  • Kim, Hyun-Bae;Lee, Yong-Sic
    • 한국정보교육학회:학술대회논문집
    • /
    • 2011.01a
    • /
    • pp.103-112
    • /
    • 2011
  • In Intellectual Subject the learning is applied individualization learning but In Computer Subject most teachers teach the curriculum with altogether lesson because of lack about understanding computer subject and the great gap of student's beforehand. The purpose of this paper is to suggest Customized Educational Program to help teachers apply in the classroom and to analyze the effect of educational using Personalized Learning model on the improvement of student's learning attitude and self-directed learning ability. For this study, after the Personalized Learning model class, measured learning attitude, student's class satisfaction and the expanding of self-directed learning ability by the self-assessment reports, a product, teacher's evaluation.

  • PDF

An Inference Similarity-based Federated Learning Framework for Enhancing Collaborative Perception in Autonomous Driving

  • Zilong Jin;Chi Zhang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1223-1237
    • /
    • 2024
  • Autonomous vehicles use onboard sensors to sense the surrounding environment. In complex autonomous driving scenarios, the detection and recognition capabilities are constrained, which may result in serious accidents. An efficient way to enhance the detection and recognition capabilities is establishing collaborations with the neighbor vehicles. However, the collaborations introduce additional challenges in terms of the data heterogeneity, communication cost, and data privacy. In this paper, a novel personalized federated learning framework is proposed for addressing the challenges and enabling efficient collaborations in autonomous driving environment. For obtaining a global model, vehicles perform local training and transmit logits to a central unit instead of the entire model, and thus the communication cost is minimized, and the data privacy is protected. Then, the inference similarity is derived for capturing the characteristics of data heterogeneity. The vehicles are divided into clusters based on the inference similarity and a weighted aggregation is performed within a cluster. Finally, the vehicles download the corresponding aggregated global model and train a personalized model which is personalized for the cluster that has similar data distribution, so that accuracy is not affected by heterogeneous data. Experimental results demonstrate significant advantages of our proposed method in improving the efficiency of collaborative perception and reducing communication cost.

Personalized Context-Aware System for Chronic Low Back Pain (만성 요통에 대한 맞춤형 상황 인지 시스템)

  • Yoon, Dowon;Jihn, Chang-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.23-31
    • /
    • 2021
  • Treatment and management of chronic low back pain (CLBP) should be tailored to the patient's individual context. However, there are limited resources available in which to find and manage the causes and mechanisms for each patient. In this study, we designed and developed a personalized context awareness system that uses machine learning techniques to understand the relationship between a patient's lower back pain and the surrounding environment. A pilot study was conducted to verify the context awareness model. The performance of the lower back pain prediction model was successful enough to be practically usable. It was possible to use the information from the model to understand how the variables influence the occurrence of lower back pain.

Design and Implementation of an Adaptive learning Management System for Personalized Learning (학습자 특성을 고려한 적응적 학습 관리 시스템의 설계 및 구현)

  • 김명회;이현태;오용선
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.1
    • /
    • pp.8-17
    • /
    • 2004
  • In this paper, we design an intelligent loaming management logics which provide personalized teaming considering adaptive learning content dement and content sequencing. We enhance the existing functional model including adaptive learning management functions. Also, we present a system architecture to implement the adaptive learning management system. We realize the adaptive teaming management system based on the SCORM run-time engine.

  • PDF

The study on implementation of modified SCORM standard for effective design of goal driven personalized e-learning system (목표지향 개인화 이러닝 시스템의 효율적인 설계를 위한 SCORM 표준의 수정제안 구현 연구)

  • Lee, MiJoung;Kim, KiSeok
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.3
    • /
    • pp.41-51
    • /
    • 2009
  • In this thesis, we suggested an e-learning model, which is named 'goal driven personalized e-learning system' to improve educational effects, and implemented it. The system makes the learner choose the learning goal which could be a motivational power for learning, so it enabled self-directed learning. In order to implement the system, we proposed new standards related to personalization by modifying SCORM 2004 standard. New standards stand for the statistics on learning objects usage, a goal for driving learning. and information of the contents model and the sequencing information model, which are parts of the system previously suggested. We implemented the system, and then proved that personalize e-learning is possible by showing that the system could offer a learning path individually to learners who have different characteristics.

  • PDF

Development of Personalized Learning Course Recommendation Model for ITS (ITS를 위한 개인화 학습코스 추천 모델 개발)

  • Han, Ji-Won;Jo, Jae-Choon;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.21-28
    • /
    • 2018
  • To help users who are experiencing difficulties finding the right learning course corresponding to their level of proficiency, we developed a recommendation model for personalized learning course for Intelligence Tutoring System(ITS). The Personalized Learning Course Recommendation model for ITS analyzes the learner profile and extracts the keyword by calculating the weight of each word. The similarity of vector between extracted words is measured through the cosine similarity method. Finally, the three courses of top similarity are recommended for learners. To analyze the effects of the recommendation model, we applied the recommendation model to the Women's ability development center. And mean, standard deviation, skewness, and kurtosis values of question items were calculated through the satisfaction survey. The results of the experiment showed high satisfaction levels in accuracy, novelty, self-reference and usefulness, which proved the effectiveness of the recommendation model. This study is meaningful in the sense that it suggested a learner-centered recommendation system based on machine learning, which has not been researched enough both in domestic, foreign domains.