• Title/Summary/Keyword: Persistent turbidity

Search Result 6, Processing Time 0.019 seconds

Characterization of Physical Properties of Turbid Flow in the Daecheong Reservoir Watershed dining Floods (홍수시 대청호 유역에 발생하는 탁수의 물리적 특성)

  • Chung, Se Woong;Lee, Heung Soo;Yoon, Sung Wan;Ye, Lyeong;Lee, Jun Ho;Choo, Chang Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.934-944
    • /
    • 2007
  • Fine suspended solids (SS) induced into a reservoir after flood events play important ecological and water quality roles by presenting persistent turbidity and attenuating light. Thus the origin and physical features must be characterized to understand their transport processes and associated impacts, and for the establishment of watershed based prevention strategies. This study was aimed to characterize the physical properties of the SS sampled from Daecheong Reservoir and its upstream rivers during flood events. Extensive field and laboratory experiments were carried out to identify the turbidity-SS relationships, particle size distributions, settling velocity, and mineral compositions of the SS. Results showed that the turbidity-SS relationships are site-specific depending on the locations and flood events in the system. The turbidity measured within the reservoir was much greater than that measured in the upstream rivers for the same SS value. The effective diameters ($D_{50}$) in the rivers were in the range of $13.3{\sim}54.3{\mu}m$, while those in the reservoir were reduced to $2.5{\sim}14.0{\mu}m$ due to a fast settling of large particles in the rivers. The major minerals consisting of the SS were found to be Illite, Muscovite, Albite, and Quartz both in the rivers and reservoir. Their apparent settling velocities at various locations in the reservoir were in the range of 0.06~0.13 m/day. The research outcome provides a fundamental information for the fine suspended particles that cause persistent turbidity in the reservoir, and can be used as basic parameters for modeling study to search watershed based optimal control measures.

Analyzing the Effect of an Extreme Turbidity Flow Event on the Dam Reservoirs in North Han River Basin (북한강 수계 대규모 탁수사상 발생에 의한 댐 저수지의 탁수 영향 분석)

  • Park, Hyung-Seok;Chung, Se-Woong;Choung, Sun-a
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.282-290
    • /
    • 2017
  • A long-term resuspension of small particles, called persistent turbidity, is one of the most important water quality concerns in the dam reservoirs system located in North Han River. Persistent turbidity may incur aesthetic nuisance and harmful effect on the ecosystem health, in addition to elevated water treatment costs for the drinking water supply to the Seoul metropolitan area. These sufferings have been more intensified as the strength and frequency of rainfall events increase by climate change in the basin. This study was to analyze the effect of an extreme turbidity flow event that occurred in 2006 on the serial reservoirs system (Soyang-Uiam-Cheongpyung-Paldang) in North Han River. The CE-QUAL-W2 model was set up and calibrated for the river and reservoirs system using the field data obtained in 2006 and 2007. The results showed that Soyang Reservoir released turbid water, which was classified as the TSS concentration is greater than 25 mg/L, for 334 days with peak TSS of 264.1 mg/L after the extreme flood event (592.7 mm) occurred between July 10 and 18 of 2006. The turbid water departed from Soyang Reservoir reached at the most downstream Paldang Reservoir after about 20 days and sustained for 41 days, which was validated with water treatment plant data. Since the released water from Soyang Reservoir had low water temperature and high TSS, an underflow formed in the downstream reservoirs and vertically mixed at Paldang Reservoir due to dilution by the sufficient inflow from South Han River.

Fermentation properties of beer produced from Korean two-row barley or malt (Gwangmaek) supplemented with Korean red ginseng extracts and Bokbunja (Rubus coreanus Miquel) juice

  • Park, Ji-Won;Kim, Ji Hyeon;Kwon, Young-An;Kim, Wang June
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.596-603
    • /
    • 2019
  • This study involved the production of specialty lager beers supplemented with Korean red ginseng extracts or Bokbunja (Korean black raspberry, Rubus coreanus Miquel) juice. The effects of the Korean red ginseng extracts or Bokbunja juice on the specific gravity, pH, yeast viability, free amino nitrogen content, reducing sugar content, color, alcohol content, turbidity, and sensory evaluation were evaluated. The alcohol content of the beers containing the extracts or juice were within the standard alcohol amounts (3.63-4.0%, v/v). The pH values of the three samples containing Bokbunja juice were lower than that of the control values. The sensory evaluation showed that the addition of Bokbunja juice was superior to the ginseng extracts, and the optimal addition time was before or after the secondary fermentation. These data indicate that the flavor and odor of the Bokbunja juice are more persistent than that of the ginseng extracts.

Water Transportation and Stratification Modification in the Andong-Imha Linked Reservoirs System (안동호-임하호 연결에 따른 물 이동과 수온성층 변화)

  • Park, Hyeung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.31-43
    • /
    • 2014
  • Recently, Andong Reservoir and Imha Reservoir located in Nakdong River basin (Korea) are being connected by a tunnel (length 2km, diameter 5.5m) for a conjunctive use. The objectives of this study were to construct a two dimensional(2D) laterally-averaged model for two reservoirs, and examine the effects of connection on the water transportation and temperature stratification in the reservoirs. The 2D models for each reservoir were calibrated using field data obtained in 2006, and applied to the linked system for the year of 2002 when a severe flood intruded into Imha Reservoir during the typhoon Rusa. Simulation results showed that 364 million $m^3$ of water can be conveyed from Imha to Andong, while 291 million $m^3$ of water from Andong to Imha after connection. It resulted in 1.38 m increase of annual averaged water level in Andong Reservoir, whereas 3.75 m decrease in Imha Reservoir. The structures of thermal stratification in both reservoirs were influenced in line with the flow exchanges. In Andong Reservoir, the location of thermocline moved upward about 10 m compared to an independent operation. The results imply that the persistent turbidity issue of Imha Reservoir might be shifted to Andong Reservoir during a severe flood event after connection.

Late Quaternary Sedimentary Processes in the Northern Continental Margin of the South Shetland Islands, Antarctica (남극 남쉐틀랜드 군도 북부 대륙주변부의 후기 제 4기 퇴적작용)

  • 윤석훈;윤호일;강천윤
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Sedimentary facies and high-resolution echo facies were analyzed to elucidate sedimentation pattern of the late Quaternary glacial-marine deposits in the northern continental margin of the South Shetland Islands. Six sedimentary facies are classified, based on grain texture and sedimentary structures in gravity cores. The high-resolution (3.5 ㎑) echo characters are classified into 6 echo facies on the basis of clarity, continuity, and shape of bottom and subbottom echoes together with seafloor topography. Distribution of the echo and sedimentary facies suggest that there was a significant change in sedimentation pattern between the Last Glacial Maximum (LGM) and subsequent glacier-retreating period. When the grounded glaciers extended to the present shelfbreak during LGM, coarse-grained subglacial tills were widespread in the shelf area, and deep troughs in the shelf were carved beneath the fast-flowing ice steam. As the glacial margin retreated landward after LGM, dense meltwater plumes released from the retreating ice-front were funneled along the glacier-carved troughs, and accumulated channel- or cannyon-fill deposits in the shelf and the upper to mid slope. At that time, slope sediments seem to have been reworked by slope failures and unsteady contour currents, and further transported by fine-grained turbidity currents along the South Shetland Trench. After the glacial retreat, sediments in the shelf and slope areas have been mainly introduced by persistent (hemi) pelagic settling, and fine-grained turbidity currents frequently occur along the axis of the South Shetland Trench.

Late Quaternary Depositional Processes in the Korea Plateau and Ulleung Interplain Gap, East Sea (동해 한국대지 및 울릉 분지간통로의 제4기 후기 해저퇴적작용)

  • 윤석훈;박장준;한상준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.187-198
    • /
    • 2003
  • High-resolution (Chirp, 3-11 kHz) echo facies and sedimentary facies of piston-core sediments were analyzed to reveal the late Quaternary depositional processes in the Korea Plateau and Ulleung Interplain Gap. The Korea Plateau is an Isolated topographic high with a very restricted input of terrigenous sediments, and its slope is characterized by a thin sediment cover and various-scale submarine canyons and valleys. Echo and sedimentary facies suggest that the plateau has been moulded mainly by persistent (hemi) pelagic sedimentation and intermittent settling of volcanic ashes. Sediments on the plateau slope and steep margins of ridges and seamounts were reworked by earthquake-induced, large-scale slope failures accompanied by slides, slumps and debris flows. As major fraction of the reworked sediments consists of (hemi) pelagic clay particles, large amounts of sediments released from mass flows were easily suspended to form turbid nepheloid layers rather than bottom-hugging turbidity currents, which flowed further downslope through the submarine canyons and spreaded over the Ulleung Basin plain. In the Ulleung Interplain Gap, sediments were introduced mainly by (hemi) pelagic settling and subordinate episodic mass flows (turbidity currents and debris flows) along the submarine channels from the slopes of the Oki Bank and Dok Island. The sediments in the Ulleung Interplain Channel and its margin were actively eroded and reworked by the deep water flow from the Japan Basin.