• Title/Summary/Keyword: Perpendicular Coil

Search Result 25, Processing Time 0.025 seconds

Characteristics of High Voltage Discharge using Triggered Spark Gap (Trigged Spark Gap의 고전압 방전제어특성 연구)

  • Son, Yoon-Gyu;Kim, Kwang-Gi;Park, Sang-Wook;Cho, Moo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1816-1818
    • /
    • 1997
  • A triggered sparkp gap switch was fabricater and its high-voltage discharge characteristics were studied. The switch is composed of two main electrodes and one trigger electrode which is placed perpendicular to the main one. Spark gap distance was fixed by 25 mm. This device has been operated without self firing at the pulse repetition frequency from 1 to 20 Hz limited by the charging current, and the hold-off voltage from 10 to 30kV. An IGBT switch and igniter coil (originally used in a car) were adopted for a trigger circuit. In this article preliminary switch characteristics of the spark gap switch are reported with the emphasis on the description of the trigger circuit.

  • PDF

Enhancement of delamination strength in Cu-stabilized coated conductor tapes through additional treatments under transverse tension at room temperature

  • Shin, Hyung-Seop;Bautista, Zhierwinjay;Moon, Seung-Hyun;Lee, Jae-Hun;Mean, Byoung-Jean
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.25-28
    • /
    • 2017
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses that could affect its electromechanical transport property. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with the delamination problem of multi-layered REBCO CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal and mechanical cycling. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in the multi-layered REBCO CC tapes becomes a critical issue. Various trials to increase the delamination strength by improving interface characteristics at interlayers have been performed. In this study, in order to investigate the influences of laser cleaning and Ag annealing treated at the substrate side surface, transverse tensile tests were conducted under different sample configurations using $4.5mm{\times}8mm$ upper anvil. The mechanical delamination strength of differently processed CC samples was examined at room temperature (RT). As a result, the Sample 1 with the additional laser cleaning and Ag annealing processes and the Sample 2 with additional Ag annealing process only showed higher mechanical delamination strength as compared to the Sample 3 without such additional treatments. Sample 3 showed quite different behavior when the loading direction is to the substrate side where the delamination strength much lower as compared to other cases.

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF

Analysis of AC losses in HTS coils by temperature variations

  • Kim, Yungil;Lee, Ji-Kwang;Lee, Seyeon;Kim, Woo-Seok;Lee, Siyoung;Choi, Kyeongdal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.50-54
    • /
    • 2018
  • We analyzed the temperature dependency of the AC losses in high temperature superconducting (HTS) coils. In the case of a short sample of an HTS tape, the magnetization loss at 4.2 K could be higher than the one at 77 K for a same transport current. It happens when the perpendicular magnetic field is above a certain magnitude. The AC loss characteristics of solenoidal coils have been analyzed at the temperatures of 65 K and 77 K. They were categorized by the aspect ratios. The operating current of a solenoid was normally set about 70 % of the critical current. An HTS solenoid with the same operating current of 77 K causes larger AC losses at 65 K in the most cases of the HTS solenoids. We also analyzed the AC loss characteristics due to the temperature variations for three types of superconducting magnetic energy storages. Two of them were solenoidal types and the other was toroidal type. The results showed the tendency for the coils to have higher AC losses at lower temperature with the same operating currents and scenarios.

position marking technique for data measured in a scanning hall probe system (스캐닝 홀 프로브 측정 시스템의 데이터 측정 위치 표시 기술)

  • Yoo, Jae-Un;Lee, Jae-Young;Jung, Ye-Hyun;Lee, Sang-Moo;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.13-15
    • /
    • 2007
  • We employed home-made position marking module in the scanning Hall probe system. The module is composed of two coils of which gap, a, between wires in a coil is $500{\mu}m$. We appiled 10-35mA of current with 15Hz in the coils and recorded ac corresponding magnetic field signal with respect to measuring time while we measured DC field profiles produced due to superconducting film in a perpendicular magnetic field. We calibrate the position, x, of coils using the measuring time and location of the coils in the holder. The error range was about ${\pm}0.1mm$. We test the module as we applied current of 100A and filed of 1kG in the superconducting tape. It was confirmed that there was no interference between superconducting tape and marking coils.