• 제목/요약/키워드: Perovskite-type Oxide

검색결과 49건 처리시간 0.022초

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Pyun, Su-Il;Lee, Gyoung-Ja;Kim, Ju-Sik
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.116-125
    • /
    • 2007
  • This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

Development of Perovskite-type Cobaltates and Manganates for Thermoelectric Oxide Modules

  • Weidenkaff, A.;Aguirre, M.H.;Bocher, L.;Trottmann, M.;Tomes, P.;Robert, R.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.47-53
    • /
    • 2010
  • Ceramics with perovskite-type structure are interesting functional materials for several energy conversion processes due to their flexible structure and a variety of properties. Prominent examples are electrode materials in fuel cells and batteries, thermoelectric converters, piezoelectrics, and photocatalysts. The very attractive physical-chemical properties of perovskite-type phases can be modified in a controlled way by changing the composition and crystallographic structure in tailor-made soft chemistry synthesis processes. Improved thermoelectric materials such as cobaltates with p-type conductivity and n-type manganates are developed by following theoretical predictions and tested to be applied in oxidic thermoelectric converters.

Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가 (Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated)

  • 오미영;;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

디젤엔진 배기가스중 질소산화물 저감을 위한 금속 산화물 촉매를 이용한 실험적 연구 (An Experimental Study on the Reduction of Nitric Oxides from the Diesel Engine Exhaust Gas with Metal Supported Oxides Catalysts)

  • 채재우;황재원;정지용;한정희;황화자;김석
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.68-75
    • /
    • 2001
  • In this paper, a number of supported metal oxides and perovskite type catalysts were investigated for the NOx reduction from the diesel engine exhaust gas. All catalysts were made into pellets type with diameter of 3-4 mm alumina(Al$_2$O$_3$) as a supporter. These samples were tested by real diesel exhaust gas which contains CO, hydrocarbons and soot in the temperature range of 150~55$0^{\circ}C$ with the $3300h^{-1}$ space velocity (SV). Among the results, several promising catalysts showed NOx conversion above 50% in the temperature range of 150-35$0^{\circ}C$. From these results supported metal oxides catalysts and perovskite type could be recommended for the practical application to the automobile exhaust treatments.

  • PDF

LaMnO3형 페롭스카이트 산화물에서 입자상물질의 촉매연소반응 (Catalytic Combustion of Carbon Particulate over LaMnO3 Perovskite-Type Oxides)

  • 이용화;이근대;박성수;홍성수
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.619-626
    • /
    • 2004
  • We have studied the catalytic combustion of soot particulates over perovskite-type oxides prepared by malic acid method, The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxide. In addition, the reaction conditions such as temperature and $O_2$ concentration were investigated. The partial substitution of alkali metals into A site in the $LaMnO_3$ catalyst, enhanced the catalytic activity in the combustion of carbon particulate and the activity was shown in the order: Cs > K > Na. For the $La_{1-x}Cs_{x}MnO_{3}$ catalysts, the catalytic activity showed the maximum value with x=0.3 but no more increase on the catalytic activity was shown with x > 0.3. For the $La_{0.8}Cs_{0.2}MnO_{3}$ catalyst, the substitution of Fe or Ni increased the ignition temperature. The ignition temperature decreased with an increase of $O_2$ concentration, however, no more increase in the catalytic activity was shown with $O_2$ concentration > 0.2. The introduction of NO into reactants showed no effect on the catalytic activity.

페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극에서 이산화탄소의 전해환원에 의한 알콜류 생성 (Carbon Dioxide Reduction to Alcoholson Perovskite-Type $La_{0.9}$$Sr_{0.1}$$CuO_3$ Electrodes)

  • 김태근;임준혁
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.677-682
    • /
    • 1996
  • 페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극을 이용하여 이산화탄소를 메탄올, 에탄올등의 알콜류와 아세트 알데히드로 전해환원하였다. 전해환원 실험은 전류밀도 100mA/c$m^2$ 그리고 환원 전위 -2 to -2.5 V vs. Ag/AgCl에서 수행하였다. 실험결과 메탄올은 11.6%, 에탄올은 15.3% 그리고 아세트알데히드는 6.2 %의 최고효율을 나타내었다. 따라서 페로브스카이트 전극은 알콜생성 면에서 기타 다른 금속전극에 비하여 매우 우수한 효과를 보여주었다.

  • PDF

Sol-Gel법에 의한 Perovskite-Type Oxide(La1-xSrxCo1-yFeyO3-δ) 코팅용액의 제조 (Preparation of Perovskite-Type Oxide (La1-xSrxCo1-yFeyO3-δ) Coating Solution by Sol-Gel Method)

  • 박자룡;이동일;정상혁;김태환;성재석;송기창
    • Korean Chemical Engineering Research
    • /
    • 제43권6호
    • /
    • pp.740-744
    • /
    • 2005
  • $La(NO_3)_3{\cdot}xH_2O$, $Sr(NO_3)_2$, $Co(NO_3)_2{\cdot}6H_2O$, $Fe(NO_3)_3{\cdot}9H_2O$를 출발물질로 하고 La와 Sr의 몰비를 변화시켜 perovskite형 산화물인 $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ 졸을 제조하였다. 또한, 여러 조건에서 합성된 졸의 특성을 확인하기 위해 viscometer, FT-IR, TG-DTA, XRD 등을 사용하여 분석을 행하였다. 제조된 perovskite형 산화물 졸은 1.16 cp의 평균점도를 나타내었으며 조성에 관계없이 pH 0.5 정도의 강산성을 나타내었다. 용액 중의 La 함량이 많아질수록 동일 부피에서의 용액의 점도가 낮았고, 점도가 급격하게 증가하는 겔화시간이 증가하였다.

질소산화물의 촉매반응에 의한 저감기술에 관한 연구 (A Stud on the Catalytic Removal of Nitric Oxide)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

Magnetic Property of Oxide with the Perovskite Structure, $A_2Fe(III)BO_6$ (A = Ca, Sr, Ba and B = Sb, Bi)

  • 이성옥;조태연;변송호
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권1호
    • /
    • pp.91-97
    • /
    • 1997
  • In the course of magnetic study on several perovskite-type oxides, A2Fe(Ⅲ)BO6 (A = Ca, Sr, Ba and B = Sb, Bi), we have observed a strong irreversibility in their dc-magnetizations. When the structural data and the Mossbauer spectra are considered, such an irreversibility is to be associated with some competitions between the nearest-neighbors (nn) and the next-nearest-neighbors (nnn) in their magnetic sublattices. Particularly, the Mossbauer spectra indicate that Sr2FeBiO6 of cubic perovskite-structure is apparently well ordered crystalline compound. Nontheless this antiferromagnet shows a magnetic property which resembles that of a spin-glass. The strong history dependence is observed below 91 K and the irreversible magnetic behavior is also observed from the measurement of hysteresis loops at 10 K after zero-field-cooled (zfc) and field-cooled (fc) processes. Considering the nn and the nnn superexchanges of almost same order in ordered perovskite, it is proposed that there exists a competition and cancellation of antiferromagnetic and ferromagnetic superexchange between the nearest-neighbors and the next-nearest-neighbors, thus introducing a certain degree of frustration.