• 제목/요약/키워드: Perovskite-type

Search Result 156, Processing Time 0.019 seconds

Development of Perovskite-type Cobaltates and Manganates for Thermoelectric Oxide Modules

  • Weidenkaff, A.;Aguirre, M.H.;Bocher, L.;Trottmann, M.;Tomes, P.;Robert, R.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • Ceramics with perovskite-type structure are interesting functional materials for several energy conversion processes due to their flexible structure and a variety of properties. Prominent examples are electrode materials in fuel cells and batteries, thermoelectric converters, piezoelectrics, and photocatalysts. The very attractive physical-chemical properties of perovskite-type phases can be modified in a controlled way by changing the composition and crystallographic structure in tailor-made soft chemistry synthesis processes. Improved thermoelectric materials such as cobaltates with p-type conductivity and n-type manganates are developed by following theoretical predictions and tested to be applied in oxidic thermoelectric converters.

Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo;Sun, Chang-Bong;Lee, Gun-Dae;Ju, Chang-Sik;Lee, Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

  • PDF

The Studies on the Simultaneous Removals of NOx and SOx from Stationary Sources by using Perovskite type Catalysts (페로브스카이트형 촉매계를 이용한 고정원 배가스로부터의 NOx 와 SOx의 동시제거 기술에 관한 연구)

  • Lee, Byong-Yong;Choung, Suk-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.475-479
    • /
    • 1996
  • At present studies, we are going to suggest the new type of Perovskite derived catalysts which modify the defects of transition metals impregnated. Perovskite type catalyst is a typical mixed metal oxides, and there are "defect"s (from like that oxygen, cation, crystallic structure) were made by difference from composition, preparing method and so forth. And because this, its electro-magnetic character could be much changed. By using this phenomena, it could utilize the modification of adsorption/desorption characters as well as the catalytic activities in NOx reduction. Because perovskite type catalyst can exchange the metal of the each lattice site freely and it is possible to represent the peculiar.

  • PDF

Stabilization of the Perovskite Phase and Dielectric Properties in the System $Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O_3$ ($Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O_3$계에서의 Perovskite상의 안정성 및 유전특성)

  • 김정욱;최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.295-304
    • /
    • 1995
  • Stabilization of the perovskite phase and sequence of reactions occuring during calcination were studied with solid solutions formed between Pb(Zn1/3Nb2/3)O3 and Pb(Fe1/2Nb1/2)O3. In the PZN-PFN composition of equal molar ratio, rhombohedral type pyrochlore phase (Pb2Nb2O7) and PbO-rich distorted cubic type pyrochlore phase (Pb3Nb2O8) were coexisted as intermediate phases at temperatures below 85$0^{\circ}C$, and these phases transformed to a stable cubic type pyrochlore phase, Pb3Nb4O13 solid solution and a perovskite solid solution at temperatures above 85$0^{\circ}C$. The major stable phase as increasing sintering temperatures was a perovskite phase in this binary system and prominent suppression of the pyrochlore phase was achieved by substituting Zn2+ with Fe3+ or by increasing sintering temperature. The composition containing 20mol% PZN possessed the best dielectric properties, and the dissipation factor was lower than 5% in all compositions.

  • PDF

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Pyun, Su-Il;Lee, Gyoung-Ja;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.116-125
    • /
    • 2007
  • This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

Carbon Dioxide Reduction to Alcoholson Perovskite-Type $La_{0.9}$$Sr_{0.1}$$CuO_3$ Electrodes (페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극에서 이산화탄소의 전해환원에 의한 알콜류 생성)

  • 김태근;임준혁
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.677-682
    • /
    • 1996
  • The electrochemical carbon dioxide reduction to produce acetaldehyde, methanol and ethanol is investigated by using perovskite type electrode ($La_{0.9}$$Sr_{0.1}$$CuO_3$). The experiments were Performed under 100 mA/cm2 and -2 to -2.5 V vs. Ag/AgCl. The highest faradaic efficiencies for methanol, ethanol, acetaldehyde were 11.6, 15.3, and 6.2%, respectively. The experimental data demonstrated that the capability of the perovskite type oxide for the electrode of electrochemical carbon dioxide reduction to produce alcohols was superior to other metal electrode. Key words : Perovskite, Electrode, Alcohol Formation, Electrochemical Reduction, Carbon Dioxide Fixation.

  • PDF

Photoluminescence Behavior of $Al^{3+}$, $Pr^{3+}$ Doped Perovskite-type $La_{2/3}TiO_{3}and Pyrochlore-type $La_{2}Ti_{2}O_{7}$ ($Al^{3+}$, $Pr^{3+}$가 첨가된 Perovskite $La_{2/3}TiO_{3}와 Pyrochlore $La_{2}Ti_{2}O_{7}$의 발광 특성)

  • Park, Sang-Mi;Park, Joung-Kyu;Kim, Chang-Hae;Park, Hee-Dong;Jang, Ho-Gyeom
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.806-810
    • /
    • 2001
  • $La_{2/3}TiO_3$, $La_2Ti_2O_7$ are used in various parts by dielectric properties. The purpose of the present study is to understand the photoluminescence properties of $Al^{3+}\;and\;Pr^{3+}$ doped perovskite-type $La_{2/3}TiO_3$ and pyrochlore-type $La_2Ti_2O_7$ phosphor, which characterized by the red emission $(^1D_2{\rightarrow}^3H_4)\;of\;Pr^{3+}$ of $Pr^{3+}$ ion. The explanation for the energy transfer and the corresponding critical distance were proposed on the role of Al^3+ ions as energy transfer mediates in perovskite-type $La_{2/3}TiO_3$:Pr phosphor. In order to clarify the distinction of photoluminescence propoerties between the perovskite-type $La_{2/3}TiO_3$ and the pyrochlore $La_2Ti_2O_7$, the trap-involved process and the charge transfer band have been investigated.

  • PDF

Humidity Effect on the Characteristics of the Proton Conductor Based on the BaR0.5+xTa0.5-xO3-δ (R=Rare Earth) System (BaR0.5+xTa0.5-xO3-δ (R=희토류 금속)계 Proton 전도체 특성에 미치는 수분의 영향)

  • Choi, Soon-Mok;Seo, Won-Sun;Jeong, Seong-Min;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.290-296
    • /
    • 2008
  • $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structures which have been reported as proton conductors over $600^{\circ}C$ were studied. The $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure is known to be more easily synthesized and has better stability than normal $ABO_3$ perovskite structure. And it is stable at about $800^{\circ}C$ in the $CO_2$ atmosphere, whereas the $BaCeO_3$ perovskite is easily decomposed into carbonate. In addition, this $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure could simply produce oxygen vacancies within their structure not by introducing additional doping oxides but by just controling the molar ratio of $B'^{+3}$ and $B"^{+5}$ metal ions in the B site. Hence it is easy to design the structure which shows highly sensitive electrical conductivity to humidity. In this study, the single phase boundary of $BaR_{0.5+x}Ta_{0.5-x}O_{3-{\delta}}$(R = rare earth) complex perovskite structures and it's phase stability were investigated with changes in composition, x. And the humidity dependance of electrical conductivity at different $P_{H2O}$ conditions was investigated.

Catalytic Combustion of Benzene over Perovskite-type Oxides Prepared Using Malic Acid Method (능금산법으로 제조된 페롭스카이트형 산화물에서 벤젠의 촉매연소반응)

  • Jung, Won-Young;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Perovskite-type oxides were successfully prepared using malic acid method, characterized by TG/DTA, XRD, XPS, TEM and $H_2$-TPR and their catalytic activities for the combustion of benzene were determined. Almost of catalyst showed perovskite crystalline phase and 15-70 nm particle size. The $LaMnO_3$ catalysts showed the highest activity and the conversion reaches almost 100% at $350^{\circ}C$. The catalysts were modified to enhance the activity through substitution of metal into the A or B site of the perovskite oxides. In the $LaMnO_3$-type catalyst, the partial substitution of Sr into site the A-site enhanced the catalytic activity in the benzene combustion. In addition, the partial substitution of Co or Cu into site the B-site also enhanced the catalytic activity and the catalytic activity was in the order of Co > Cu > Fe in the $LaMn_{1-x}B_xO_3$ (B = Co, Fe, Cu) type catalyst.

A Stud on the Catalytic Removal of Nitric Oxide (질소산화물의 촉매반응에 의한 저감기술에 관한 연구)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF