• 제목/요약/키워드: Perovskite Catalyst

검색결과 60건 처리시간 0.025초

Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계 (Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity)

  • 이대원;성주영;이관영
    • Korean Chemical Engineering Research
    • /
    • 제56권2호
    • /
    • pp.281-290
    • /
    • 2018
  • 최근 선진국을 중심으로 고연비-저배출 내연기관 (디젤) 자동차 보급의 필요성이 대두되면서 기존 촉매후처리 장치의 저온성능 강화를 위한 기술적 방안들이 시급히 요구되고 있다. 본 논문에서는 디젤엔진 배출 탄소입자상 물질의 연소반응에 있어 연료함유 촉매(Fuel-Borne Catalyst)와 페로브스카이트(Perovskite)의 복합촉매 시스템이 보이는 상용모델촉매 대비 우수한 저온 연소성능과 이의 Perovskite 촉매 조성에 대한 의존성에 관해 논하였다. Fe/Ce 계열 연료함유 촉매가 A-site 원소(La)에 K이 부분치환되고, B-site 금속이 Fe인 Perovskite 촉매와 복합화될 때 상대적으로 우수한 저온 연소성능 개선효과가 관찰되었다. 이를 관찰하기 위해 연료함유 촉매가 함유되거나 함유하지 않은 탄소 입자상 물질과 다양한 조성의 La 계열 Perovskite 촉매를 혼합한 고정층에 대한 온도상승 산화반응 실험(Temperature-Programmed Oxidation)을 수행하였으며, 이산화탄소 생성과 질소산화물 농도 저하 패턴의 연동특성을 통해 두 촉매의 상호 연계작용을 유추하였다.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

마이크로 추력장치용 과산화수소 촉매 반응기 (Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster)

  • 이대훈;조정훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

디젤 개질을 위한 페로브스카이트 구조 촉매와 연료주입 시스템의 개발 (Preparation of perovskite-based catalysts and fuel injection system for high durability of diesel reforming)

  • 이준기;박상선;설용건
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.115.2-115.2
    • /
    • 2010
  • Autothermal reforming(ATR) processes of hydrocarbon liquids such as diesel fuels are spotlighted as methods to produce hydrogen for Fuel cell. However, the use of heavy hydrocarbons as feedstocks for hydrogen production causes some problems which increase the catalyst deactivation by the carbon deposition. Coking can be inhibited by increasing the water dissociation on the catalyst surface. This results in catastrophic failure of whole system. Performance degradation of diesel autothermal reforming leads to increase of undesirable hydrocarbons at reformed gases and subsequently decrease the performance. In this study, perovskite-based catalysts were investigated as alternatives to substitute the noble metal catalyst for the ATR of diesel. The investigated perovskite structure was based on LaCrO3. and metals were added at the A-site to enhance oxygen ion mobility, transition metals were doped on the B-site to enhance the reformation. Substituted Lanthanum chromium perovskite were made by aqueous combustion synthesis, which can produce high surface area. And for the homogeneous fuel supply, we made ultrasonic injection system for reforming. We compared durability of evaporation system and ultrasonic system for fuel injection.

  • PDF

비예열 시동특성을 갖는 이원 촉매 베드 과산화수소 가스발생기 (Hydrogen Peroxide Gas Generator with Dual Catalytic Bed for Non-preheating Start-up)

  • 임하영;안성용;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.163-167
    • /
    • 2007
  • 은 촉매는 과산화수소 촉매분해에 많이 사용되지만, 상온에 시동이 어렵고 높은 온도에 적용하기 곤란하다. 본 논문에서는 은이 가지고 있는 단점을 극복하기 위해 기화기와 고온 촉매 베드로 구성된 이원 촉매 베드에 대한 연구를 수행하였다. 백금을 기화기 촉매로, perovskite 구조를 가지는 촉매를 고온 촉매로 선정하였고, 가스발생기를 이용한 시험을 통해 상온에서 예열이 없이도 시동이 가능함과 고온에서 안정적으로 작동함을 보여주었다.

  • PDF

페로브스카이트 촉매에서 A-Site 치환에 따른 촉매활성 변화 (Catalytic Activity Change of Perovskite Catalysts with A-Site Substitution)

  • 함현식;김규성;안성환;신기석;김송형;박홍수
    • 한국응용과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.272-277
    • /
    • 2007
  • Catalytic activity changes of perovskite catalysts were examined with their A-site substitution. For the preparation of catalysts, Mn was used for B-site component and La, Ce, Sr, Ba, Ca, Ag were used for A-site component of the perovskite $catalysts(ABO_3)$ The effect of calcination temperature on methane combustion and perovskite structure was also investigated. The surface area and adsorbed oxygen species were tested with BET apparatus and $O_2-TPD$, respectively. Perovskite catalysts whose A-site was partially substituted needed higher calcination temperature than un-substituted one to form the perovskite structure. From $O_2-TPD$ experiment, it was found that methane combustion activity was directly related to the oxygen desorbing ability of the catalysts. The prepared catalyst(LM-7) was stable at $600^{\circ}C$ for 72 hours of reaction.

질소산화물의 촉매반응에 의한 저감기술에 관한 연구 (A Stud on the Catalytic Removal of Nitric Oxide)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

페로브스카이트형 촉매계를 이용한 고정원 배가스로부터의 NOx 와 SOx의 동시제거 기술에 관한 연구 (The Studies on the Simultaneous Removals of NOx and SOx from Stationary Sources by using Perovskite type Catalysts)

  • 이병용;정석진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.475-479
    • /
    • 1996
  • At present studies, we are going to suggest the new type of Perovskite derived catalysts which modify the defects of transition metals impregnated. Perovskite type catalyst is a typical mixed metal oxides, and there are "defect"s (from like that oxygen, cation, crystallic structure) were made by difference from composition, preparing method and so forth. And because this, its electro-magnetic character could be much changed. By using this phenomena, it could utilize the modification of adsorption/desorption characters as well as the catalytic activities in NOx reduction. Because perovskite type catalyst can exchange the metal of the each lattice site freely and it is possible to represent the peculiar.

  • PDF

페롭스카이트 촉매의 제조와 메탄 산화에 응용 (Preparation of Perovskite Catalysts and Its Application to Methane Combustion)

  • 함현식;김규성;안성환;신기석;김송형;박홍수
    • 한국응용과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.67-73
    • /
    • 2007
  • Methane combustion over perovskite catalysts was investigated. For the preparation of catalysts, Co, Mn, Fe, and Ni were used as B-site components of the perovskite catalysts $(ABO_3)$ and La was used as A-site component. The effect of calcination temperature on methane combustion and perovskite structure was also investigated. The structure of perovskites, surface area, and adsorbed oxygen species were tested with XRD, BET apparatus, and $O_2-TPD$, respectively. The formation of perovskite structure was affected by the calcination temperature. The catalyst desorbing oxygen at a lower temperature showed better activity for the methane combustion, therefore, the oxygen species desorbing at lower temperatures is responsible for the methane combustion.

Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo;Sun, Chang-Bong;Lee, Gun-Dae;Ju, Chang-Sik;Lee, Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권2호
    • /
    • pp.95-102
    • /
    • 2000
  • Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

  • PDF