• Title/Summary/Keyword: Permeate

Search Result 519, Processing Time 0.019 seconds

The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies

  • Hassan, Abdul Rahman;Rozali, Sabariah;Safari, Nurul Hannan Mohd;Besar, Badrul Haswan
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.316-322
    • /
    • 2018
  • In this study, the effects of polymer concentration and additive in the formation of asymmetric nanofiltration (NF) membrane were evaluated. The membrane fabrication was carried out via dry/wet phase inversion technique. A new formulation of dope solution with polymer concentration ranging between 17 wt% to 21 wt% and the present of additive was developed. The results show that the permeate flux gradually decreases as polymer concentration increased, until $2.5969L/m^2h$ and increased the rejection up to 98.7%. Addition of additive, polyethylene glycol 600 increased dyes rejection up to 99.8% and decreased the permeate flux to $3.6501L/m^2h$. This indicates that the addition of polyethylene glycol additive led towards better membrane performance. The morphological characteristics of NF membrane were analysed using a Scanning Electron Microscopy.

Effects of polymeric Al and hydrolysis products of PAC at different pH on performance of nanofiltration with PAC coagulation pretreatment (PAC 전처리 시 수소이온 농도에 따라 발생 가능한 알루미늄 종에 의한 나노여과막 성능 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Coagulation can be used for pretreatment of NF membrane filtration. Foulants such as organic matter and particulate can be removed effectively with the process while high flux recovery is maintained. Recently various types of polyaluminium coagulants including polyaluminium chloride(PAC) are commercially available for water treatment. This study examines effects of polymeric Al and hydrolysis products of PAC on nanofiltration membrane performance. Dominant hydrolysis products were polymeric Al, $Al(OH)_3$, and ${Al(OH)_4}^{-1}$ at acidic, neutral, and alkaline pH conditions, respectively. Under acidic pH condition, flux decline was increased with increasing PAC concentrations, possibly due to polymeric Al adsorption on membrane pore and/or surfaces. For neutral and alkaline pH conditions, little flux decline was observed with increasing PAC concentrations except the highest ${Al(OH)_4}^{-1}$ concentration, with which rapid flux decline was shown. Removal of ionic matters was also varied with pH conditions in this study. Especially, conductivity removal was substantially low and $Ca^{2+}$ concentration in the permeate was quite high at neutral pH condition.

Separation of Zinc Ion from Metal Plating Wastewaters by Reverse Osmosis Membrane (Membrane을 이용한 도금폐수 중 아연이온의 분리에 관한 연구)

  • 장자순;이효숙;정헌생;이원권
    • Membrane Journal
    • /
    • v.4 no.2
    • /
    • pp.106-112
    • /
    • 1994
  • The ultrafiltration(UF) and reverse osmosis(RO) tests for a model metal plating wastewater prepared with zinc sulfate, showed the zinc ion rejection coefficient of over 99% and the permeate flux of $1.49 {\times} 10^{-3}cm/sec$ at pH = 8.3. The effect of cyanide on the zinc removal was investigated. When the amount of cyanide addition was same the zinc content, the zinc was removed over 99% and the cyanide was excluded about 93%. The addition of the surfactants such a LAS-Na and EDTA-Na was found to reduce the permeate flux down to $0.76 {\times} 10^{-3}cm/sec$ at the RO membrane.

  • PDF

Operating Characteristics of Two Stage Membrane Bioreactor (2단형 막분리 활성슬러지법(Two Stage MBR)의 운전 특성에 관한 고찰)

  • Park, Jae-Roh;Lim, Hyun-man;Kim, Eoung Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.141-150
    • /
    • 2002
  • Two-stage membrane bioreactor using submerged hollow fiber membrane was applied in laboratory scale to treat nitrogen and phosphorus of domestic wastewater. Alum as the flocculant and adsorbent was added into the anaerobic basin of two-stage membrane bioreactor and mixed liquid of aerabic basin was recycled to the anaerobic basin for the purpose of nitrogen removal. Experiment was carried out to find removal efficient of phosphorous and nitrogen components in the mixed liquid, and the stability of the permeate flux and pressure of two-stage membrane bioreactor. In case of alum was added as the flocculant and adsorbent into the anaerobic basin, soluble phosphorus removal efficient was relatively higher and total permeate resistance(Rtot) was more increased out nitrogen removal efficient was lower as the result of lack of alkalinity and insufficient nitrification process than the case of alum was not added.

Desalting enhancement for blend polyethersulfone/polyacrylonitrile membranes using nano-zeolite A

  • Mansor, Eman S.;Jamil, Tarek S.;Abdallah, Heba;Youssef, H.F.;Shaban, Ahmed M.;Souaya, Eglal R.
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.451-460
    • /
    • 2019
  • Thin film composite membranes incorporated with nano-sized hydrophilic zeolite -A were successfully prepared via interfacial polymerization (IP) on porous blend PES/PAN support for water desalination. The thin film nanocomposite membranes were characterized by SEM, contact angle and performance test with 7000 ppm NaCl solution at 7bar. The results showed that the optimum zeolite loading amount was determined to be 0.1wt% with permeate flux 29LMH.NaCl rejection was improved from 69% to 92% compared to the pristine polyamide membrane where the modified PA surface was more selective than that of the pristine PA. In addition, there was no significant change in the permeate flux of the thin film nanocomposite membrane compared with that of the pristine PA in spite of the formation of the dense polyamide layer. The stability of the polyamide layer was investigated for 15 days and the optimized membrane presented the highest durability and stability.

Filtration Characteristics of H2O-C6H12O6 Solution at Cell Membrane Model of Kidney which Irradiated by High Energy X-Ray (고에너지 엑스선을 조사한 신장의 세포막모델에서 포도당수용액 (H2O-C6H12O6)의 여과작용특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • The filtration characteristics of H2O-C6H12O6 solution at cell membrane model in renal tubule which irradiated by high energy x-ray(linac 6MV) was investigated. The cell membrane model used in this experiment was a polysulfonated copolymerized membrane of m-phenylene-diamine(MPD) and trimesoyl chloride(TMC)-hexane. They were used to two cell membrane models(CM-1, CM-2). The cell membrane model composed of 0.5 wt% TMC-hexane solution(CM-2) had higher permeate flux(Jv) and rejection coefficient(R) than composed of 0.1 wt% TMC-hexane solution(CM-1). The permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in two cell membrane models(CM-1, CM-2) were increased with increase of pressure drop and effective pressure difference. In this experiment range(pressure 1.5-4 MPa, temperature 36.5 ℃), permeate flux(Jv) of H2O solvent in irradiated membrane was found to be decreased about 20-30 times than non-irradiated membrane, permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in irradiated membrane was found to be decreased about 2-13 times, about 4-6 times than non-irradiated membrane, respectively. The concentration increase of H2O-C6H12O6 solution at cell membrane model significantly was increased at rejection coefficient(R), was decreased at permeate flux(Jv). As the filtration of H2O-C6H12O6 solution in cell membrane model were abnormal, cell damages were appeared at cell.

Evaluating the Performance of Blended Fertilizer Draw Solution in Reuse of Sewage Water Using Forward Osmosis (정삼투를 이용한 하수의 재이용에서 혼합비료 유도용액의 성능 평가)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.90-96
    • /
    • 2020
  • This paper aims to reuse sewage by a forward osmosis using a blended fertilizer as a draw solution. This work deals with the primary sedimentation basin influent, effluent, and secondary sedimentation basin effluent from J sewage treatment plant. The average permeate water flux was higher in the order of the blend of KCl and NH4Cl > KCl and NH4H2PO4 > KCl and (NH4)2HPO4, and the reverse solute flux was lower in the order of the blend of KCl and NH4H2PO4 < KCl and NH4Cl < KCl and (NH4)2HPO4. Regardless of the blended fertilizer, the permeate water flux of the effluent from the secondary sedimentation basin was the highest. The blended fertilizer of KCl and NH4H2PO4 was found to be most useful for the reuse of sewage because it contains nitrogen, phosphorus and potassium, which are the major components of a fertilizer, and has a low reverse solute flux. When the blend of KCl and NH4H2PO4 was used as a draw solution, the average permeate water and reverse solute flux for the secondary sedimentation basin effluent were 12.14 L/㎡hr and 0.012 mol/㎡s, respectively.

Effect of $N_2$-back-flushing Time and TMP in Lake Water Treatment Using Multichannel Ceramic Microfiltration Membranes (다채널 세라믹 정밀여과막으로 호소수 처리시 질소 역세척 시간 및 막간 압력차의 영향)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.124-133
    • /
    • 2007
  • In this study, we treated lake water by 2 kinds of multichannel ceramic micro filtration membranes. We could investigate effects of $N_2-back-flushing$ time (BT) and transmembrane pressure (TMP), and find optimal operating conditions. The BT were changed in $10{\sim}60$ sec, TMP in $0.6{\sim}2.0$ bar at fixed filtration time (FT) 8 min, flow rate 2.0 L/min and back-flushing pressure 2.0 bar. Also, the optimal conditions were discussed in the viewpoints of resistance of membrane fouling $(R_f)$, dimensionless permeate flux $(J/J_o)$, permeate flux (J) and total permeate volume $(V_T)$. As result, optimal back-flushing conditions for HC04 ($0.4{\mu}m$ pore size) and HC10 membrane $(1.0{\mu}m)$ were BT=10 sec and BT=20 sec, respectively. Then, higher TMP should increase the driving force, and could produce more VT. Average rejection rates of pollutants were higher than 95.4% for turbidity, $12.7{\sim}20.1%\;for\;COD_{Mn},\;0.0{\sim}6.4%\;for\;NH_3-N,\;1.9{\sim}4.6%$ for T-N and $34.9{\sim}88.4%$ for T-P.

Back Flushing Behavior of Microfiltration Membrane Fouled by Alumna Colloidal Suspensions (알루미나 현탁액에 의해 오염된 정밀여과막의 역세척 거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.34-46
    • /
    • 2009
  • Effect of backflushing on the membrane fouling for polyethylene capillary membranes was examined by measuring the flux of $Al_2O_3$ colloidal suspensions through the cross flow microfiltration. In the comparison of with and without the application of backflushing, the hydraulic resistance to permeate flow of the suspension was less with backfluslng, but the Increasing rate in permeate resistance was higher. Regardless of backflushing, the cake filtration was dominant at the initial period of filtration with backflushing, being followed by the pore blocking. And at steady state, the fouling mechanism is almost governed by the cake filtration model. On the contrary, the pore blocking preceded the cake filtration in the initial stage of the original membrane before backflushing. And irrespective of backflushing, the ratio of cake filtration to total fouling increased, compared with that fur before backflushing. For the membrane with $0.24{\mu}m$ pore size, the permeate resistance was higher than that of $0.34{\mu}m$ pore size membrane. but the ratio of cake filtration was smaller than that of large pore membrane. In comparing the ratio of each fouling component to the total fouling for the case with backflushing pore blocking was 7.8% and cake filtration was 92.2%. for the case without backflushing, total fouling was composed of 9.6% pore blocking and 90.4% cake filtration.

The Performance Evaluation of Blended Fertilizers as Draw Solution in Forward Osmosis Desalination (유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 혼합비료의 성능평가)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This study is to find the optimum draw solution in fertilizer-drawn forward osmosis desalination. Considering osmotic pressure, solubility, and pH, 20 blended fertilizers were screened. Their performance were evaluated in terms of pure water permeate flux, reverse solute flux, and specific reverse solute flux for nitrogen, phosphorus, and potassium. The pure water permeate flux of blended fertilizers including KCl were relatively higher. The reverse solute flux and specific reverse solute flux for nitrogen of blended fertilizers containing ${NO_3}^-$ ion were relatively higher than those of the nitrate ion-free draw solution. Those for phosphorus, and potassium of blended fertilizers including $NH_4H_2PO_4$, and $KNO_3$ were relatively higher than those of the phosphorus-free, and potassium-free draw solution, respectively. The blended fertilizer of $NH_4H_2PO_4$ and KCl contains all of nitrogen, phosphorus and potassium which are essential elements of fertilizer, and has the relatively high water permeation flux and the low reverse solute flux for nitrogen, phosphorus, and potassium. Therefore, it is the most effective draw solution for fertilizer-drawn forward osmosis desalination.