• Title/Summary/Keyword: Permeability materials

Search Result 1,061, Processing Time 0.04 seconds

Prediction of Permeability through Plain Woven Fabric by Using Unit Cell (단위 셀을 이용한 평직의 투과율 계수 예측)

  • Song, Young-Seok;Youn, Jae-Ryoun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.384-387
    • /
    • 2002
  • In the resin transfer molding, there are many advantages such as high volume, high performance, and low cost, The permeability is essential in the design and operation of the process, Traditionally, the determination of permeability can be divided as three methods, which are experimental measurement, analytical, and numerical prediction using the Darcy's law. In this study, the permeability in the microscopic level is first computed on the square-packing and hexagonal packing structures of the filaments inside the yarn by using CVFEM. (omitted)

  • PDF

Modeling of Gas Permeability Coefficient for Cementitious Materials with Relation to Water Permeability Coefficient (시멘트계 재료의 기체 투기계수 해석 및 투수계수와의 상관성 연구)

  • Yoon, In-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.207-217
    • /
    • 2016
  • Permeability can not be expressed as a function of porosity alone, it depends on the porosity, pore size and distribution, and tortuosity of pore channels in concrete. There has been considerable interest in the relationship between microstructure and transport in cementitious materials, however, it is very rare to deal with the theoretical study on gas permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. In this study, fundamental approach to compute gas permeability of (non)carbonated concrete is suggested. For several compositions of cement pastes, the gas permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. For carbonated concrete, reduced porosity was calculated and this was used for calculating the gas permeability coefficeint. As the result of calculation of gas permeability for carbonated concrete, carbonation leaded to the significant reduction of gas permeability coefficient and this was obvious for concrete with high w/c ratio. Meanwhile, the relationship between gas permeability and water permeability has a linear function for cement paste based on Klinkenberg effect, however, which is not effective for concrete. For the evidence of the modeling, YOON's test was accomplished and these results were compared to each other.

Proton Conductivity and Methanol Permeability of Sulfonated Polysulfone/PPSQ Composite Polymer Electrolyte Membrane (설폰화된 폴리설폰/PPSQ 유-무기 복합 전해질막의 수소이온 전도도 및 메탄올 투과 특성)

  • Kwon Jeongdon;Lee Changjin;Kang Yongku
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.89-93
    • /
    • 2004
  • Sulfonated polysulfone (SPSF) with poly(phenylmethyl silsesquioxane, PPSQ) composite polymer electrolyte membranes were prepared and their proton conductivity, water uptake and methanol permeability of membranes were characterized. By controlling the ratio of $(CH_3)_3SCI\;and\;CISO_3H$ and reaction time, SPSF with $37\~75\%$ degree of sulfonation were synthesized. The increase of sulfonate groups in the base polymer resulted in the increase of the water uptake in the membranes as well as methanol permeability. Composite membranes were prepared by casting of DMF solution of SPSF and PPSQ. The proton conductivity of the composite membrane at room temperature was $2.8\times10^{-3}\~4.9\times10^{-2}S/cm.$ The increase of PPSQ contents in composite membranes resulted in a decrease in water uptake and methanol permeability. Composite membranes containing $5\%$ PPSQ did not make a significant effect on the proton conductivity nO methanol permeability compared with that of pristine SPSF, but a significant decrease of water uptake was observed.

An Experiemtnal Study on the Air Permeability Effect on Concrete Carbonation (콘크리트의 중성화에 영향을 미치는 투기성에 관한 실험적 연구)

  • 권영진;김무한;강석표;유재강
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.277-284
    • /
    • 2001
  • Hardened concrete contains pores of varying types and sizes, and therefore the transport of air through concrete can be considered. The rate of permeability will not only depends on the continuity of pores, but also on the moisture contents in concrete and finishing material on concrete. Also it knows that the durability of reinforced concrete structure is concerned with air permeability which effects on the carbonation occurred by invasion of CO2 gas and the corrosion of steel bar occurred by O$_2$. In this paper, the effects of curing conditions and finishing materials on carbonation and air permeability are investigated according to the accelerated carbonation test. As results, carbonation velocity and air permeability are effected by curing conditions and finishing materials, and air permeability coefficient is effected by moisture content. Also the relationship between carbonation velocity coefficients and air permeability coefficients has been quite well established.

Effect of Refractories on Coating Material Properties in Evaporative Pattern Casting Process (소실모형주조용 도형재 특성에 미치는 충전재의 영향)

  • Choi, Hyun-Jin;Oh, Young-Kun;Jun, Ghi-Chan;Lee, Sung-Chun;Lee, Gyung-Whan
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.569-576
    • /
    • 1997
  • Coating materials for Evaporative Pattern Casting (EPC) process have been developed to investigate the effect of refractories on coating material properties. Three types of developed and one foreign coating materials were used. The former designated as A, B, C and the latter named S.K. The refractory of coating material A is spherical shape of zirconia, and the ones of B, C and S.K. is flake shape of mica. Strength, permeability at room and elevated temperature, anti-sand attachability and carbon residuary were evaluated at each coating materials. Permeability measurement device for elevated temperature was also designed. The zirconia type of coating material had excellent permeability, on the other hand the mica type had good strength and anti-sand attachability. It was found that the refractories were not broken during casting, so permeability indicated same trend at both room and elevated temperature. Based on results, coating material contained small size of mica which is designated as B has the best combination for cast iron.

  • PDF

Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume

  • Mahdikhani, Mahdi;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.175-191
    • /
    • 2014
  • In recent years, the emergence of nanotechnology and nanomaterial has created hopes to improve various properties of concrete. Nano silica as one of these materials has been introduced as a cement replacement material for concrete mixture in construction applications. It can modify the properties of concrete, due to high pozzolanic reactions and also making a denser microstructure. On the other hand, it is well recognized that the use of mineral admixtures such as silica fume affects the mechanical properties and durability of cementitious materials. In addition, the superior performance of self-consolidating concrete (SCC) and self-consolidating mortars (SCM) over conventional concrete is generally related to their ingredients. This study investigates the effect of nano silica and silica fume on the compressive strength and chloride permeability of self-consolidating mortars. Tests include compressive strength, rapid chloride permeability test, water permeability, capillary water absorption, and surface electrical resistance, which carried out on twenty mortar mixtures containing zero to 6 percent of nano silica and silica fume. Results show that SCMs incorporating nano silica had higher compressive strength at various ages. In addition, results show that nano silica has enhanced the durability SCMs and reduced the chloride permeability.

The Effect of Chemical Vapor Infiltrated SiC Whiskers on the Change in the Pore Structure of a Porous SiC Body

  • Joo, Byoung-In;Park, Won-Soon;Choi, Doo-Jin;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.199-202
    • /
    • 2006
  • In this study, SiC whiskers were grown on a porous SiC diesel particulate filter for nanoparticle filtering. To grow the whiskers at the inner pore without closing the pores, we used chemical vapor infiltration with a solution source and a dilute. As the deposition time increased, the whiskers grew and formed a network structure. After 180 min of deposition, the mean diameter of the whiskers was 174 nm and the compressive strength was 58.4 MPa. The pores shrank from $10{\mu}m\;to\;0.4{\mu}m$ and, because the whiskers filed the inner pores, the gradient of permeability decreased as the deposition time increased. However, by using the network structure of whiskers deposited for 120 min and 180 min, we obtained a diesel particulate filter with pores of $0.98{\mu}m\;and\;0.4{\mu}m$, respectively. Furthermore, the filter shows better permeability than a porous body with pores of $1{\mu}m$. In short, by filtering the nanoparticulate materials, the network structure of whiskers improves the strength, reduces the pore size and minimizes the permeability drop.

Strength and permeability of fiber-reinforced concrete incorporating waste materials

  • Xu, Yun;Xu, Yin;Almuaythir, Sultan;Marzouki, Riadh
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.133-152
    • /
    • 2022
  • Ecological issues such as natural resource reduction and enormous waste disposals are increasingly leading in developing civilization toward sustainable construction. The two primary environmental issues are the depletion of natural resources and the disposal of trash in open landfills. Waste steel fiber (WSF) was investigated for usage as a cement-based concrete (CBC) constituent in this research. Recycling waste fibers both makes cement composites more long and cost-effective, also aids in pollution reduction. The objective of this study is to analyze the impacts of waste fiber on the fresh and mechanical features of concrete using recycled additives. A comparative research on the durability and mechanical qualities of fiber-reinforced concrete (FRC) constructed with natural aggregates was conducted for this aim. The obstacles to successful WSF recycling methods application in the building industry have been investigated, resulting that CBCs with these fibers make an economic and long lasting choice to deal with waste materials. The workability of fiber enhanced concrete was found to be comparable to that of normal concrete. Fibers have a considerable impact on the splitting tensile strength, flexural and compressive strength of recycled concrete. Fiber may enhance the water permeability. When the WSF content is 0.6 kg/m3, the water absorption is nearly half. Fibers would have no effect on its permeability.

An Experimental Study on Permeability in Elevation of Porous Concrete Using Unsaturated Polyester Resin (불포화 폴리에스터수지를 이용한 투수 콘크리트의 투수성 향상에 관한 실험적 연구)

  • Lho, Byeong-Cheol;Choi, Kyu-Hyung;Kim, Jeong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.163-169
    • /
    • 2007
  • This study is focused on the proper mixture design of materials for the porous concrete with unsaturated polyester resin. The materials used in the mixture include the single-grade aggregates, unsaturated polyester resin as binder, and calcium carbonate as a filler. An experimental procedure has been carried out to select the best combination of the materials that satisfy both the required permeability and compressive strength. Various kinds of gravel size, the ratio of binder, and F/B ratios are tried to get proper mixture, and the permeability coefficient and compressive strength have been measured to find out the best combination of materials based on the proper Korean Standards. A promix design satisfied the standards of rainfall runoff reduction system with $3.5{\times}10^{-1}$ (cm/sec) of permeability, 34 % of porosity, 11 MPa of compressive strength can be obtained.

Development of New Soft Contact Lens Materials Using Ester-Monomers of Itaconic Acid from Aspergillus itaconicus (Aspergillus itaconicus 유래 itaconic acid의 ester-monomer를 이용한 새로운 soft contact lens 소재 개발)

  • You, Young-Hyun;Nam, Joo-Hyeung;Kim, Bieong-Kil;Kim, Soon-Bok;Moon, Ik-Jae;Kim, Jong-Pil;Seu, Young-Bae
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.538-542
    • /
    • 2009
  • In this study, we confirmed water content and oxygen permeability of new polymeric materials synthesized from itaconic acid used for soft contact lenses. In this study, we polymerized materials for soft contact lenses using HEMA (2-hydroxyethyl methacrylate), the based-monomer of soft contact lenses, EGDMA (ethylene glycol dimethacrylate) as a cross linkage agent, and the new additives mono-ester or di-ester derived from itaconic acid commercially produced by the fermentation of A. itaconicus. New polymer materials for contact lenses were synthesized with the mixture of HEMA and mono- or di-ester at different ratios and water content and oxygen permeability (Dk) was analyzed. In polymerizing HEMA and mono-ester (15%), the water content and oxygen permeability of contact lenses were found to be of good value at 57.7% and 28.6 Dk respectively. The mixture of HEMA and mono-ester is more excellent than HEMA/di-ester in regards to water content and oxygen permeability. The water content and oxygen permeability of soft contact lenses made by new polymeric materials were highly represented.