• Title/Summary/Keyword: Permeability materials

Search Result 1,061, Processing Time 0.032 seconds

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Effect of Breathable Film for Modified Atmosphere Packaging Material on the Quality and Storability of Tomato in Long Distance Export Condition (MAP 포장재인 숨쉬는 필름이 장거리 수출 조건에서 토마토의 품질과 저장성 향상에 미치는 영향)

  • Islam, Mohammad Zahirul;Kim, Young-Shik;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.221-226
    • /
    • 2011
  • The study was carried out to investigate the effect of MA packaging materials on quality and storability of tomato in long distance export condition. We found that the fresh weight loss in perforated film was higher than other breathable films. The fresh weight of tomato (cv 'Madison') packaged with breathable films, such as 5,000 cc, 10,000 cc, $20,000cc/m^2{\cdot}day{\cdot}atm$ oxygen permeable films, reduced less than 0.6%, but perforated film that already being used for packaging horticultural crops showed 1.4% fresh weight loss during $5^{\circ}C$ storage for 20 days and then $20^{\circ}C$ storage for last 5 days with 85% relative humidity. The carbon dioxide and oxygen concentration in tomato packages showed proper level for MA storage in $20,000cc/m^2{\cdot}day{\cdot}atm$ $O_2$ breathable film treatment at $5^{\circ}C$ storage. Although at $20^{\circ}C$ storage, the carbon dioxide concentration increased sharply, the oxygen concentration decreased remarkably, the change of these gases concentration was the lowest in 20,000 cc film treatment. The ethylene concentration was sharply increased at $20^{\circ}C$ from $21^{st}$ day to $25^{th}$ day after $5^{\circ}C$ storage for 20 day, and the concentration was lower in 20,000 cc film treatment among the breathable film treatments. Until 20 days, at $5^{\circ}C$ storage all treatments did not exceed the marketability. However, the last 5 days during at $20^{\circ}C$, the fruit appeared fungal rots and the quality rapidly decreased. The $20,000cc/m^2{\cdot}day{\cdot}atm$ $O_2$ permeability treated tomato performed higher firmness (9.56 N), vitamin C (16.31 mg/100 gFW), and soluble solids ($7^{\circ}Brix$) than other breathable films at final storage day. The results suggest that the $20,000cc/m^2{\cdot}day{\cdot}atm$ $O_2$ permeable film treatment of tomato (cv 'Madison') performed the highest quality and storability of tomato for long distance exporting.

Variations of Physical Properties Depending on the Height of Reactor in Vertical Composting Process (수직형 퇴비화공정에서 반응조 높이구간별 퇴비화물질의 물성변화에 관한 연구)

  • Kim, Yong Seong;Kim, Byung Tae;Lee, Chang Hae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.115-124
    • /
    • 2007
  • The material compressions in the vertical composting reactor affect to the biodegradation rates of the organic wastes. This study investigated the variations of physical properties of the composting materials according to the height of reactor due to affect to the settlement in the vertical composting reactor. The variations of decreased temperature after peak temperature showed the different patterns depending on the reactor heights. The variation width of re-increased temperature after peak temperature was reduced as the mixing operations were increased, and increased as the height of reactor elevated. The moisture content and the variation width of the moisture content were increased higher as the height of the reactor became higher. The variations of the bulk density at each height of vertical reactor showed the same tendency comparing with those of the moisture content. The relationship between bulk density and moisture content had shown the quadratic equation (r2=0.94). The dry solid contents at each reactor height were decreased as the height of reactor were increased. The results of the variation of the physical properties during the composting process were caused by the downward compression of the material into the reactor. Settlement rate in the vertical composting reactor was estimated about 2.184cm/day. To increase the biodegradation efficiency in the vertical reactor, the conditions of air path in the composting material matrix have to be investigated afterwards.

  • PDF

The Effect of Antihistamine on Endotoxin-induced Acute Lung Injury (내독소 유도 급성폐손상에서 항히스타민의 역할)

  • Jung, Bock-Hyun;Koh, Youn-Suck;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.3
    • /
    • pp.219-229
    • /
    • 2002
  • Background : Sepsis-induced acute lung injury (ALI) is caused by many cellular and humoral mediators induced by an endotoxin. Histamine, which is widely distributed in the lungs and has been considered as an important mediator of sepsis. It increases P-selectin expression on the endothelial cell surfaces and induces IL-8 secretion. Therefore, an endotoxin-induced histamine may be related to neutrophil-mediated ALI by inducing the migration and activation of neutrophils in the lung tissue. However, the role of endogenous histamine in endotoxin ALI has not been clarified. The purpose of this study was to investigate how endotoxin-induced ALI is influenced by endogenous histamine and to identify the possible mechanism of action. Materials and Methods : The study consisted of 4 groups using Sprague-Dawley rats : 1) control group, where the rats were infused intratracheally by normal saline, 2) an endotoxin group, where lipopolysaccharide (LPS) was administered intratracheally 3) the $H_2$ receptor antagonist-treated group ($H_2$ group) and 4) the $H_1$ receptor antagonist-treated group ($H_1$ group), where $H_2$-receptor blocker (ranitidine) and $H_1$-receptor blocker(pyrilamine) were co-treated intravenously with the intratracheal administration of an endotoxin. The lung leak index using $I^{125}$-BSA, the total protein and LDH concentration in the lung lavage fluid, myeloperoxidase(MPO) activity in the lung tissue, the pathologic score and the total number of neutrophils, TNF-$\alpha$, IL-$1{\beta}$ and IL-10 in lung lavage (BAL) fluid were measured in each group as the indices of lung injury. Results : Compared to the control group, the endotoxin group exhibited significant increases in all lung injury indices. Significant reductions in the endotoxin-mediated increases in lung leak index (p<0.05) were observed in both the $H_1$ and $H_2$ groups. In addition the total protein (p<0.05) and LDH concentration (p<0.05) in the BAL fluid were also lower in the $H_2$ group compared to the endotoxin group. However, there was no change in the MPO activity in the lung tissue, the pathologic score and the total number of neutrophils in the BAL fluid in both the $H_2$ and $H_1$ groups compared to the endotoxin group. The increases in TNF-$\alpha$ IL-$1{\beta}$ and IL-10 concentrations in the BAL fluid observed in the endotoxin group were not reduced in the $H_2$ and $H_1$ groups. Conclusion : Antihistamine attenuated the enhanced alveolar-capillary permeability induced by the endotoxin via the $H_2$ receptor. However the attenuating mechanism may not be related to the pathogenesis of neutrophil dependent lung injury.

Autoradiographic Studies on the Inhibitory Effect of Dibutyryl Cyclic AMP on Mouse Oocyte Maturation in Vitro (Dibutyryl Cyclic AMP가 생쥐여포난자의 성숙에 미치는 억제효과에 관한 자기방사법적 연구)

  • Choi, Choon-Keun
    • Applied Microscopy
    • /
    • v.7 no.1
    • /
    • pp.21-43
    • /
    • 1977
  • This experiment was undertaken in order to localize the labeled dbcAMP (dibutyryl cyclic AMP) in oocytes whose development has been suppressed by cold dbcAMP for 6 or 19 hours in vitro. Mouse oocytes were obtained from the ovaries of 3-4 week old A strain female mice, by puncturing the Graafian follicles in the modified Krebs-Ringer bicarbonate salt solution under the dissecting microscope. Those oocytes which have intact germinal vesicle were cultured in the basic culture medium supplemented with 0.4% bovine serum albumin (BSA). Cultivation of the oocytes was carried out in a microtube developed by Cho (1974). The cultures were then incubated in a humidified 5% $CO_2$ incubator maintained at $37^{\circ}C$ for 6 or 19 hours (Donahue, 1968). DbcAMP was added to culture medium for a final concentration of 100ug/ml, and $^3H-dbc$ AMP (specific activity 13 Ci/mM) for a final concentration of $40{\mu}Ci/ml$ was also added to the medium. For electron microscopic autoradiography, those oocytes recovered from the culture were washed with phosphate buffer (pH 7.4), and immediately prefixed in a 2.5% glutaraldehyde overnight and postfixed for 2 hours at $4 ^{\circ}C$ in 1% osmium tetroxide in phosphate buffer with pH 7.4 (Palade, 1952). After fixation, the materials were dehydrated in graded alcohol series and embedded in Epon 812 mixture based on the standard procedures (Luft, 1961). The thin sections $600-700{\AA}$ thick were mounted on the grids of 200 meshes. The grids containing sections were coated with a nuclear emulsion Kodak NTB-3 and stored in a cold dark box (at $4^{\circ}C$) for 3 weeks. After exposure, the samples were developed with Kodak D-19 and stained with uranyl acetate and lead citrate. Routine observation was made with Hitachi HU-11E electron microsocope. The results of the observation were as followings: 1. It was found that the labeled dbcAMP penetrated the egg plasma membrane and dispersed at random in the cytoplasm. 2. It was also observed that most of the labeled dbcAMP was attached to microfibrillar lattices portion of the oocyte cytoplasm. There fore, it is presumed that the receptor of the dbcAMP is localized in the microfibrillar lattices of the oocyte. 3. It also seems that some other cell organells such as mitochondria, Golgi complex, cortical granules are not directly related to the action of the dbcAMP. 4. The labeled dbcAMP was neither observed in the membrane nor in the nucleus. Therefore, it seems that there is no relationship between the concentration of dbcAMP and the nuclear membranous permeability. 5. There was no difference in number of dbcAMP particles when oocytes were cultured for 6 hours and 19 hours. 6. However, it was observed that, in same of the oocytes suppressed in germinal vesicle by dbcAMP for 19 hours, cell organells were moved and concentrated to a small portion of the cytoplasm, and that the morphology of the organells greatly changed to an abnormal. form. Therefore, it is supposed that those oocytes were in the process of degeneration. From the above results, it is expected that dbcAMP penetrated the egg membrane and was bound to the receptor which seems to be located in the microfibrillar lattiees portion, and that this dbcAMP-receptor complex inhibited some enzyme system of the oocytes which are essential for the germinal vesicle breakdown.

  • PDF

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF

Effects of Vase Materials and Floral Preservative on Flower Color and Diameter in Cut Rose and Gerbera (화병 재료와 절화보존제 처리가 절화 장미와 거베라의 화색, 엽색 화경에 미치는 영향)

  • Lim, Young-Hee
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • This study was conducted to investigate the effect of vase material and floral preservative treatment over time on flower color, leaf color and flower size of cut flowers Rosa hybrida 'Aqua' and 'Corvernet', and Gerbera jamesonii 'Honeymoon' and 'Golden Time' stuck in a glass, porcelain, or onggi (pottery with a dark bronze glaze) vase containing either tap water or a floral preservative solution. The ${\Delta}E$ values in flower color of 'Aqua' rose at 8 days after treatment with a floral preservative in onggi and porcelain vases were low. The ${\Delta}E$ value of 'Covernet' rose treated with floral preservative in an onggi vase was the lowest and L value was the closest to that of petals of cut flowers at just before treatment (control). The ${\Delta}E$ value of 'Honeymoon' gerbera treated with a floral preservative in an onggi vase was the lowest and a value of 58.81 and b value of 34.29 were the closest to that of the control group as color of cut flowers in an onggi vase was similar to the color at the beginning of treatment. The ${\Delta}E$ value of 'Golden Time' gerbera treated in an onggi vase was significantly lower than that in a porcelain or glass vase and a value of -7.81 treated with a floral preservative solution in an onggi vase was the closest to the control and b value was high in an onggi vase as well. The L, a, and b values in leaf color of roses were similar to each value of the control and ${\Delta}E$ value of 3.25 measured in an onggi vase was lower than that in a porcelain or glass vase. Flower diameter of 'Covernet' and 'Golden Time' roses treated with a floral preservative in an onggi vase was greater than that in other treatments. From these results, the floral preservative applied to a holding solution is assumed to improve the quality and freshness of cut roses and gerberas by inhibiting microbes propagation and by promoting uptake of water and nutrients. The onggi vase with fine pores will promote the expression and maintenance of flower and leaf colors and may increase flower diameter by high air permeability.

Evaluating the Applicability of Activated Carbon-added Fiberboard Filters Fabricated with Lignocellulosic Fiber for the Reduction Equipment of Particulate Matter (리그노셀룰로오스 섬유 기반 활성탄-첨가 섬유판 필터의 미세먼지 저감장치용 적용가능성 평가)

  • Yang, In;So, Jae min;Hwang, Jeong Woo;Choi, Joon weon;Lee, Young-kyu;Choi, Wonsil;Oh, Seung Won;Moon, Myoung cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.548-556
    • /
    • 2021
  • This study was conducted to investigate the applicability of lignocellulosic fiber and coconut shell activated carbon (CSA) for the production of a particulate matter (PM)-reducing air-filter as raw materials to solve the environmental problems of non-woven fabrics. CSA had a good potential to use as a raw material of air-filter for reducing volatile organic compounds as well as noxious metals, and reduction capability of the CSA was 5 times higher than that of wood fiber. Natural adhesives formulated with proteinaceous wastes mostly were applied successfully to fabricate air-filters with the shape of fiberboard. The air-filter fabricated with the minimum target density of 200 kg/m3 and the maximum CSA-content of 40 wt% in fiberboard had a good manageable strength. However, the fiberboard filters was required to make vent-holes for improving an air-permeability of the filters. Size of the CSA particles was adjusted to greater than 2 mesh with the consideration of strength and formability of the fiberboard. Three-layers fiberboard that only wood fiber and the mixture of wood fiber and CSA were formed in the surface and middle layers, respectively, was determined to the optimal condition for the production of air-filters. In addition, traditional Korean paper handmade from mulberry trees (TKP) showed a good PM-reducing property as an air-filter. It is concluded that air-filtering set composed of fiberboard with vent-holes and TKP instead of conventional air-filters made with non-woven fabrics can be used as a filter for reducing the concentrations of PM, VOC and noxious metals existed in indoor and outdoor spaces.

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

Evaluation of Spatial Dose Rate in Working Environment during Non-Destructive Testing using Radioactive Isotopes (방사성동위원소를 이용한 비파괴 검사 시 작업환경 내 공간선량률 평가)

  • Cho, Yong-In;Kim, Jung-Hoon;Bae, Sang-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.373-379
    • /
    • 2022
  • The radiation source used for non-destructive testing have permeability and cause a scattered radiation through collisions of surrounding materials, which causes changes in the surrounding spatial dose. Therefore, this study attempted to evaluate and analyze the distribution of spatial dose by source in the working environment during the non-destructive test using monte carlo simulation. In this study, Using FLUKA, a simulation code, simulates 60Co, 192Ir, and 75Se source used in non-destructive testing, The reliability of the source term was secured by comparing the calculated dose rate with the data of the Health and Physics Association. After that, a non-destructive test in the radiation safety facility(RT-room) was designed to evaluate the spatial dose according to the distance from the source. As a result of the spatial dose evaluation, 75Se source showed the lowest dose distribution in the frontal position and 60Co source showed a dose rate of about 15 times higher than that of 75Se and about 2 times higher than that of 192Ir. In addition, the spatial dose according to the distance tends to decrease according to the distance inverse square law as the distance from the source increases. Exceptionally, 60Co, 192Ir, and 75Se sources confirmed a slight increase within 2 m of position. Based on the results of this study, it is believed that it will be used as supplementary data for safety management of workers in radiation safety facilities during non-destructive testing using radioactive isotopes.