• Title/Summary/Keyword: Permeability Factors

Search Result 308, Processing Time 0.026 seconds

Prediction of Water Penetration and Diffusion in Concrete Through FEM Analysis (FEM해석을 통한 콘크리트내 수분침투 및 확산 예측)

  • Yoo, Jo-Hyeong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.87-88
    • /
    • 2010
  • A permeability of concrete is a very important factors evaluating durability. So, we are carrying out a lot of relational data bases and experiment regarding a permeability. In order to evaluate a permeability of concrete, we are proceeding study on the water penetration and diffusion in concrete by water pressure. Because a way to evaluate a permeability of concrete has a limit. We will present a good method of evaluating durability of concrete using the water penetration depth of concrete by water pressure. To carry this out, we executed experiment with penetration depth of concrete by water pressure and verified it though FEM analysis.

  • PDF

Influence of Theoretical Void Ratio, Grading of Aggregate and Curing Method on Strength and Water Permeability of Porous Concrete (이론공극율, 골재입도 및 양생방법이 포러스콘크리트의 강도 및 투수성능에 미치는 영향)

  • 김재환;유범재;최세진;백용관;박정호;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.373-378
    • /
    • 2000
  • The objective of this study was to investigate the influence the influence of theoretical void ratio(T.V.R), grading of aggregate and curing method on the strength and water permeability of porous concrete, and the reduction proportion of water permeability by these factors. The results of the study showed that its strength and water permeability were greatly depended on the T.V.R and grading of aggregate, but didn't on the curing method. And, when the T.V.R and grading of aggregate were increased, the reduction proportion of water permeability was small. As the relation ship between its physical properties and non-destruction test values was very high, its use for the estimation of the physical properties will be useful.

  • PDF

Effect of Surface Finishing Materials on the Moisture Conditions in Concrete: Vapor and Water Permeability of Finishing Materials Under Changing Environmental Conditions

  • Ryu, Dong-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • Permeability to vapor and water among other performances required for finishing materials is dealt with in this study. The relative moisture content of concrete coated/covered with a finishing material was experimentally investigated while changing the environmental conditions including temperature, relative humidity, and rainfall. An organic paint (water-based urethane), organic synthetic resin emulsion-type film coating (film coating E), and inorganic porcelain tiles were selected as the finishing materials. When compared from the aspect of vapor and water permeability, the vapor permeability and water permeability of water-based urethane were high and low, respectively; those of film coating E were high and high, respectively; and those of porcelain tiles were low and low, respectively. This means that the moisture state of concrete structures is governed not only by the environmental conditions but also by the performance of finishing materials. It is therefore of paramount importance to appropriately select a finishing material to address the specific deteriorative factors involved in the concrete structure to be finished.

Synthesis of Bulk Medium with Negative Permeability Using Ring Resonators

  • Kim, Gunyoung;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.67-73
    • /
    • 2016
  • This paper presents simple expressions for the effective permeability of bulk metamaterial consisting of ring resonators (RRs) or split ring resonators (SRRs) based on the convenient geometrical factors of the structure compared with wavelength. The resonant frequency dependence of the medium permeability, including loss effects, is analyzed in detail. Inverting the analysis equations, useful design (or synthesis) equations are derived for a systematic design process with some examples. This paper may particularly be useful for the design of a bulk metamaterial with a specific negative relative permeability at a desired frequency. The loss of metamaterials consisting of RRs (or SRRs) is also analyzed over a wide frequency band from 10 MHz to 10 THz.

Permeability Measurement of a Circular Braided Preform for Resin Transfer Molding

  • Cho, Yun Kyoung;Song, Young Seok;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.135-144
    • /
    • 2003
  • Permeability of the preform is one of key factors in design of RTM (Resin Transfer Molding) mold, determination of processing conditions, and modeling of flow in the mold. According to previous studies, permeability measured in the unsaturated fiber mats are higher than that in the saturated fiber mats by about 20% because of the capillary pressure. In this study, permeabilities of several fiber preforms are measured for both saturated and unsaturated flows. A saturated experiment of radial flow has been adopted to measure the permeability of anisotropic fiber preforms with high fiber content, i.e., circular braided preforms. In this method, four pressure transducers are used to measure the pressure distribution. Permeabilities in different directions are determined and the experimental results show a good agreement with the theory. Since permeability is affected by the capillary effect, permeability should be measured in the unsaturated condition for the textile composites to be manufactured under lower pressure as in the Vacuum Assisted Resin Transfer Molding (VARTM).

Influence of Mix Factors and Mixing Ratio of Aggregate on the Strength and Water Permeability of Porous Concrete (포러스 콘크리트의 배합요인 및 골재 혼합비율이 강도 및 투수성능에 미치는 영향)

  • 김무한;김규용;백용관
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.91-98
    • /
    • 2000
  • Porous concrete having continuous voids is gaining more interest as an ecological material. It has several useful functions such as water and air permeability, sound absorption, etc. Its strengths are considerably lower than those of conventional concrete due to the large and continuous voids in it. This study has been carried out to investigate the influence of mix factors and mixture proportion of aggregate on the strengths and water permeability of porous concrete. And it has been carried out to investigate the evaluation of void of porous concrete by the ultra-sonic pulse velocity. The results f this study are as follows: 1) The theoretical void ratio has greater influence than any other factor on the strengths and water permeability of porous concrete. And it is a little affected by the replacement proportion of silica-fume and mixture proportion of aggregate. 2) Because the coefficients of correlation between the void ratio and ultra-sonic pulse velocity were relatively high, it will be possible that the void ratio is predicted by the ultra-sonic pulse velocity.

A Study on Separation of $N_2-SO_2$ Mixed Gas by Polymer Membranes (고분자막을 이용한 $N_2-SO_2$ 혼합기체의 분리에 관한 연구)

  • 김성준;민병렬;이태희
    • Membrane Journal
    • /
    • v.2 no.2
    • /
    • pp.135-143
    • /
    • 1992
  • Separation of $N_2-SO_2$ mixed gas by polymer membranes, SEPA-97(CA), TFC, and FT-30 membrane, was investigated by varying pressure and temperature. The permeability coefficients and the separation factors of mixed gases were measured, and the influence of various factors on the gas permeability characteristics and separation performance were investigated. The range of pressure was 0.1~1.0 MPa, and that of temperature was 283~303 K. The experimental results showed that the permeability coefficients and the separation factors were increased with an increase in pressure, but they were deereased with increasing temperature. Among the examined membranes, FT-30 possessed the best gas-separating characteristics.

  • PDF

Estimation of Permeability Coefficient Using Fractal Dimension of Particle Size Distribution Curve in Granular Soils (조립토 입도분포곡선의 프랙탈차원을 이용한 투수계수의 예측)

  • Park Jae-Seong;Chang Pyoung-Wuck;Son Young-Hwan;Kim Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • Since particle size distribution curves are useful to estimate permeability of soil, many formulae for permeability coefficient (k) have been published using the parameter from the curves and factors, such as grain size, particle shape and void ratio of soils. However, the parameters such as $C_c,\;C_u$ and $D_n$ derived from only some discrete points on the curve are insufficient to represent the whole gradation. In this paper fractal dimension which is quite new concept and known to be able to represent the entire curve of particle size distribution is employed for the parameters. An empirical formula of permeability coefficient has been developed with fractal dimension and percent of finer than 0.075 mm. The formula developed from this study has confirmed its effectiveness by a series of laboratory tests and comparison to other published formulae. It is found that permeability coefficient is proportional to fractal dimension and inversely proportional to percent of fines.

Dynamic evolution characteristics of water inrush during tunneling through fault fracture zone

  • Jian-hua Wang;Xing Wan;Cong Mou;Jian-wen Ding
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • In this paper, a unified time-dependent constitutive model of Darcy flow and non-Darcy flow is proposed. The influencing factors of flow velocity are discussed, which demonstrates that permeability coefficient is the most significant factor. Based on this, the dynamic evolution characteristics of water inrush during tunneling through fault fracture zone is analyzed under the constant permeability coefficient condition (CPCC). It indicates that the curves of flow velocity and hydrostatic pressure can be divided into typical three stages: approximate high-velocity zone inside the fault fracture zone, velocity-rising zone near the tunnel excavation face and attenuation-low velocity zone in the tunnel. Furthermore, given the variation of permeability coefficient of the fault fracture zone with depth and time, the dynamic evolution of water flow in the fault fracture zone under the variable permeability coefficient condition (VPCC) is also studied. The results show that the time-related factor (α) affects the dynamic evolution distribution of flow velocity with time, the depth-related factor (A) is the key factor to the dynamic evolution of hydrostatic pressure.

Micromechanics-based evaluation of diffusivity and permeability of concrete containing silica fume (실리카퓸 혼입 콘크리트의 확산계수 및 투수계수의 미시학적 추정)

  • 장종철;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.531-536
    • /
    • 2002
  • Silica fume influences concrete diffusivity and permeability as well as strength by densifying the microstructure of the interfacial transition zone (ITZ) of high strength concrete, by reducing the capillary porosity of cement paste and by producing less diffusible and permeable pozzolanic CSH gel than CSH gel of conventional cement hydration. This paper presents a procedure to predict the chloride ion diffusivity and water permeability of the high strength concrete containing silica fume. Water binder ratio, silica fume addition, degree of hydration and volume fraction of aggregates are considered as the major factors influencing concrete diffusivity and permeability in the procedure. Analytical results using the procedure are shown and verified with other data.

  • PDF