Browse > Article

Permeability Measurement of a Circular Braided Preform for Resin Transfer Molding  

Cho, Yun Kyoung (School of Materials Science and Engineering, Seoul National University)
Song, Young Seok (School of Materials Science and Engineering, Seoul National University)
Kang, Tae Jin (School of Materials Science and Engineering, Seoul National University)
Chung, Kwansoo (School of Materials Science and Engineering, Seoul National University)
Youn, Jae Ryoun (School of Materials Science and Engineering, Seoul National University)
Publication Information
Fibers and Polymers / v.4, no.3, 2003 , pp. 135-144 More about this Journal
Abstract
Permeability of the preform is one of key factors in design of RTM (Resin Transfer Molding) mold, determination of processing conditions, and modeling of flow in the mold. According to previous studies, permeability measured in the unsaturated fiber mats are higher than that in the saturated fiber mats by about 20% because of the capillary pressure. In this study, permeabilities of several fiber preforms are measured for both saturated and unsaturated flows. A saturated experiment of radial flow has been adopted to measure the permeability of anisotropic fiber preforms with high fiber content, i.e., circular braided preforms. In this method, four pressure transducers are used to measure the pressure distribution. Permeabilities in different directions are determined and the experimental results show a good agreement with the theory. Since permeability is affected by the capillary effect, permeability should be measured in the unsaturated condition for the textile composites to be manufactured under lower pressure as in the Vacuum Assisted Resin Transfer Molding (VARTM).
Keywords
Permeability; Circular braided preform; Resin transfer molding; Saturated flow; Unsaturated flow;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Y. S. Song, K. Chung, T. J. Kang, and J. R. Youn, Polym. Polym. Compos., 11, in press (2003)
2 D. G. Seong, K. Chung, T. J. Kang, and J. R. Youn, Polym. Polym. Compos., 10, 493 (2002)
3 T. J. Wang, C. H. Wu, and L. J. Lee, Polym. Compos., 15, 278 (1994)   DOI   ScienceOn
4 R. A. Greenkom, 'Flow Phenomena in Porous Media', Marcel Dekker, New York, 1983
5 Z. X. Tang and R. Postle, Compos. Struct., 49, 451 (2000)   DOI   ScienceOn
6 W.B. Young, J. Compos. Mater., 30, 1191 (1996)   DOI   ScienceOn
7 S. Amico and C. Lekakou, Compos. Sci. Technol., 61, 1945-1959 (2001)   DOI   ScienceOn
8 Y. H. Lai, B. Khomarni, and J. L. Kardos, Polym. Compos., 18, 368-377 (1997)   DOI   ScienceOn
9 K. L. Adams and L. Rebenfeld, Polym. Compos., 12, 179-185 (1991)   DOI
10 Y. Luo, I. Verpoest, K. Hoes, M. Vanheule, H. Sol, and A. Cardon, Compos. Part A- Appl. Sci., 32, 1497-1504 (2001)   DOI   ScienceOn
11 K. K. Han, C. W. Lee, and B. P. Rice, Compos. Sci. Tech-nol.,60, 2435 (2000)   DOI   ScienceOn
12 H. Golestanian and A. S. El-Gizawy, Polym. Compos., 19, 395-407 (1998)   DOI   ScienceOn
13 J. R. Weitzenbock, R. A. Shenoi, and P. A. Wilson, Com-pos. Part A- Appl. Sci., 30, 781-796 (1999)   DOI   ScienceOn
14 R. Gauvin, F. Trochu, Y. Lemenn, and L. Diallo, Polym. Compos., 17, 34-42 (1996)   DOI
15 S. G. Advani, M. V. Bruschke, and R. S. Pamas, 'Flow and Rheology in Polymer Composites Manufacturing', Elsevier, Amsterdam, 1994
16 R. S. Pamas, K. M. Flynn, and M. E. Dal-Favero, Polym. Compos., 18, 623-633 (1997)   DOI   ScienceOn
17 A. W. Chan and S. T. Hwang, Polym. Eng. Sci., 31, 1233 (1991)   DOI
18 R. S. Pamas and A. J. Salem, Polym. Compos., 14, 383-394 (1993)   DOI   ScienceOn
19 K. L. Ahn and J. C. Seferis, Polym. Compos., 12, 146 (1991)   DOI
20 A. C. Long, Compos. Part A- Appl. Sci., 32, 941-953 (2001)   DOI   ScienceOn
21 K. L. Adams and L. Rebenfeld, Polym. Compos., 12, 186 (1991)   DOI
22 K. L. Adams, W. B. Russel, and L. Rebenfeld, Int. J. Mul-tiphase Flow, 14, 203-215 (1988)   DOI   ScienceOn