• Title/Summary/Keyword: Permanent-magnet synchronous motors (PMSMs)

Search Result 25, Processing Time 0.024 seconds

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

A Study on Rotor Polarity Detection of SP-PMSM Using Offset Current Based on Current Control (전류 제어 기반 옵셋 전류를 이용한 단상 영구자석 동기 전동기의 회전자 자극 검출에 관한 연구)

  • Park, Jong-Won;Hwang, Seon-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1020-1026
    • /
    • 2019
  • In this paper, a rotor polarity detection algorithm is proposed to control the single-phase permanent magnet synchronous motors(SP-PMSMs) for high speed sensorless operation. Generally, the sensorless control of a SP-PMSM is switched to the sensorless operation in a specific speed region after the open loop startup. As a result, it is necessary to detect the rotor polarity to maintain a constant rotational direction of the SP-PMSM at the starting process. There, this paper presents a novel rotor polarity detection method using a high frequency voltage signal and offset current which is generated by current regulator. The proposed algorithm verified the effectiveness and usefulness of the rotor polarity detection through several experiments.

Method Controlling Two or More Sets of PMSM by One Inverter on a Railway Vehicle

  • Ito, Takuma;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ishikura, Keisuke
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.207-214
    • /
    • 2014
  • If two or more Permanent Magnet Synchronous Motors (PMSM) can be controlled by one inverter, a train can be driven by less energy than the present Induction Motor (IM) drive system. First, this paper proposes a method for simulating the movement of wheels and a vehicle to develop a control method. Next, a method is presented for controlling two or more PMSMs by one inverter.

Propulsion Control of Railway Vehicle using Semiconductor Transformer and Switched Reluctance Motor (반도체 변압기 및 스위치드 릴럭턴스 전동기(SRM)를 적용한 철도차량 추진제어)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.127-132
    • /
    • 2022
  • Among the electrical components mounted on railroad cars, the largest load is the main transformer, which has a low power density of 0.2~0.4 MVA/ton due to the low operating frequency(60Hz), which is an important factor for weight reduction. Therefore, research on molded transformers, semiconductor transformers, etc. is being actively conducted at Domestic and foreign in order to improve the main transformer for railway vehicles. Meanwhile, attempts are being made to apply a permanent magnet synchronous motor (PMSM) to replace an induction motor as a traction motor that is mostly applied to domestic and foreign railway vehicles. Permanent magnet synchronous motors (PMSMs) can secure higher power density and efficiency compared to induction motors, but have disadvantages in that the materials required for manufacturing are expensive and design is somewhat difficult compared to induction motors. Considering these problems, in this paper, we suggest that a small and lightweight semiconductor transformer is applied, and a simple structure, high torque, low cost SRM can be applied in accordance with the requirements such as weight reduction and high efficiency of railroad vehicles. content.

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.