• 제목/요약/키워드: Permanent-magnet synchronous generator

검색결과 205건 처리시간 0.026초

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • 제18권1호
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

해상용 3 MW 영구자석형 동기발전기의 대안설계 (Alternative Design of 3MW Offshore PM Synchronous Generator)

  • 김동언;이홍기;한홍식;정영규;서형석;정진화;임민수;곽승근;오만수;최준혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2008
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The blade rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. Baseline design with surface mounted PM magnets are completed. However, there is some concern about the excessive eddy current heating in the magnets. To alleviate this problem, another design with embedded magnet is going on. With embedded magnets, the generator length should be increased to compensate the increased flux leakage. But the field fluctuation in the magnets due to the slots are greatly reduced. This means less eddy currents and lower magnet operating temperature. In this report, engineering efforts for embedded rotor is presented.

  • PDF

A Coupled Circuit and Field Analysis of a Stand-Alone Permanent-Magnet Synchronous Generator with Inset Rotor

  • Chan T. F.;Yan Lie-Tong;Lai L. L.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.253-257
    • /
    • 2005
  • By using a coupled circuit, time-stepping, two-dimensional finite element method (2-D FEM), the performance of a stand-alone permanent-magnet synchronous generator (PMSG) with inset rotor can be computed without involving the classical two-axis model. The effects of interpolar air gap length and armature resistance on the load characteristics are investigated. It is shown that the interpolar flux density, and hence the amount of voltage compensation, is affected by magnetic saturation. Validity of the coupled circuit and field analysis is confirmed by experiments on a prototype generator. The machine exhibits an approximately level load characteristic when it is supplying an isolated unity-power-factor load.

3MW 해상풍력용 영구자석 동기발전기 개발현황 (Status of 3 MW PM Synchronous Generator Development Project for Off-shore WECS)

  • 김동언;한홍식;이홍기;정영규;서형석;정진화
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.423-426
    • /
    • 2007
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. To reduce the switching loss in the power electronics, the maximum frequency is limited to 100 Hz. This requirement limits the number of pole to six or eight. Permanent magnet excitation is assumed for higher energy yield and higher efficiency. In this report, the requirements and the first efforts for the physics design are described.

  • PDF

A Study on the Analysis on the Direct-Driven High Power Permanent Magnet Generator for Wind Turbine

  • Kim, Ki-Chan;Ihm, Hyung-Bin;Lee, Ju
    • 조명전기설비학회논문지
    • /
    • 제22권3호
    • /
    • pp.88-95
    • /
    • 2008
  • In the paper, the permanent magnet synchronous generator of 1.5[MW] output power which is driven directly without gear system is designed by conventional magnetic equivalent circuit method and analyzed by finite element method. We analyzed the characteristics of generator like no load, rated load, short circuit condition and demagnetization of permanent magnet in order to verify the design results by magnetic circuit method. The last, the analysis results of two kinds of rotor types are compared with each other. Especially the THD(total harmonic distortion) of output voltage is examined for the comparison.

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

개방형 슬롯 구조를 갖는 외전형 영구자석 동기발전기의 코깅 토크 저감을 위한 슬롯 ��지 형상 설계 (Design of Slot Wedge Shape for Reducing Cogging Torque in Outer Rotor Type Permanent Magnet Synchronous Generator with Open Slot Structure)

  • 김봉주;박수강;문재원;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.936-938
    • /
    • 2011
  • This paper suggests the slot wedge shape for reducing the cogging torque of a gearless type direct-drive permanent magnet synchronous generator with open slot shape. To achieve this, we are designed the appropriate specifications of the permanent magnet synchronous generator by selected the appropriate material of slot wedge and various slot wedge shapes. The PMSG models were analyzed by finite element method. Finally, we have suggested appropriate material of slot wedges and its shape which has benefit to further reducing cogging torque and preventing decreasing of the generating power.

  • PDF

가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계 (Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 김성수;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

Optimal Design of a Distributed Winding Type Axial Flux Permanent Magnet Synchronous Generator

  • You, Yong-Min;Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.69-74
    • /
    • 2012
  • This paper presents a distributed winding type axial flux permanent magnet synchronous generator (AFPMSG) with reduced the total harmonic distortion (THD), suitable for wind turbine generation systems. Although the THD of the proposed distributed winding type is more reduced than the concentrated winding type, the unbalance of the phase back EMF occurs. To improve the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG, the Kriging based on the latin hypercube sampling (LHS) is utilized. Finally, these optimization results are confirmed by experimental results. As a result, the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG were improved while maintaining the total harmonic distortion (THD) and the average phase back EMF.

IPMSG을 이용한 풍력 발전 시스템의 최대 출력화 제어 특성 (Characteristics of Maximization Output Control for Variable Wind Generation System Using IPMSG)

  • 문상필;허영환;김종석;박한석
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.151-157
    • /
    • 2016
  • This paper proposes the variable wind generation system based on the direct torque control(DTC)for the interior permanent magnet synchronous generator. The proposed system can achieve the MPPT control without wind speed in addition to the speed and position sensorless control as well as the conventional current control method. The DTC has several advantages such as simply system configuration, ease of the flux weakening control and the sensorless control. The experimental results show the performance of the proposed wind generation system.