• 제목/요약/키워드: Permanent magnet synchronous machine (PMSM)

검색결과 62건 처리시간 0.049초

마이크로터빈용 고속 영구자석 동기발전기 운전 특성 (Operating Characteristics of High Speed PM Synchronous Generator for Microturbine)

  • 안종보;정연호;강도현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.141-143
    • /
    • 2004
  • Distributed generation(DG) using microturbine will be adopted widely because of its various usages and merits such as high heat efficiency, environmental-friendliness. Commercialized DG using microtubine that rotates up to $60,000\~100,000[rpm]$ converters mechanical power to electricity by permanent magnet synchronous machine. This paper presents comparative test and simulation results of PMSM as generator. Test was done by diode rectifier and inverter. Parameters used in the simulation are driven from FEM analysis. Under various speed and load conditions, V-I characteristics matches well and it suggests the possibility of high speed PMSM as generator. DG operating at stand alone and grid connection mode will be developed.

  • PDF

브러쉬없는 영구자석형 동기모터의 관측자 구성에 관한 연구 (A Study on the Observer Design for Brushless Permanent-Magnet Synchronous Motor)

  • 이준성;이제희;양남열;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.39-42
    • /
    • 1994
  • The application of speed or position control technique in AC drives demands accurate position and velocity feedback information. Generally, resolver and absolute encoders are used as a velocity or position sensor. But they increase cost and when the sampling frequency is faster than sensoer's output frequency we can't Set exact information. In order to solve this problem this thesis proposes a speed and a position observer design for Permanent-Magnet Synchronous Motors(PMSM) specialty in low speed drives. Most literatures on this topic design the observer based on the field_oriented d_q model. But in this thesis, a new approach to machine dynamics is proposed. Since it is difficult to design the observer using the nonlinear model, the machine model is here linearlized at the operating point. The observer designed is implemented by software using Intel's 8097 microprocessor and verifies the proper performance of observer by simulation and experiment.

  • PDF

다상 영구자석 동기 전동기의 자기 및 상호 인덕턴스 계산 (Calculation of Self and Mutual Inductances in Multi-Phase Permanent Magnet Synchronous Motor)

  • 이치우
    • 한국자기학회지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2017
  • 다상 전동기는 기존의 3상 전동기와 비교하여 높은 신뢰성과 성능의 이점 때문에 고 신뢰성을 요하는 전장과 특수기기 분야에서 많은 관심을 갖고 있다. 본 연구에서는 다상 전동기들 중 5상 영구자석 동기 전동기를 이용하여 전동기 제어의 주요 변수인 자기 인덕턴스와 상호 인덕턴스를 수식을 통한 추정 방법을 다룬다. 최근 대부분의 고효율 구동 전동기들은 FOC(Field Orinted Control)와 DTC(Direct Torque Control) 제어를 이용하므로 전압 방정식에서 가장 중요한 인덕턴스를 정확하게 추정하는 것이 중요하다. 인덕턴스를 수식적으로 계산하기 위해서 본 연구에서는 WFT(Winding Function Theory)를 적용하였다. 계산된 인덕턴스의 결과 값의 타당성 유무를 확인하기 위하여 유한요소해석과 비교 하였으며 약 3%의 편차를 가지는 것을 확인하였다. 최종적으로 WFT를 이용하여 계산된 인덕턴스를 FOC와 DTC 제어에 필요한 값인 d축과 q축 인덕턴스로 변환하는 과정을 소개한다.

Fault Tolerant Actuator for Steer-By-Wire Application

  • Mutschler P.;Krautstrunk A.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.741-745
    • /
    • 2001
  • Reliability and safety of steer-by-wire concepts can be achieved by redundant designs. This paper discusses the design of a fault tolerant concept for a force feedback actuator with a standard three-phase PMSM. In contrast to usual drives, the phases of the machine are separated electrically. This design allows driving the machine with two instead of three phases in case of a fault. A superimposed torque controller adjusts the influence of fault currents and torque harmonics in two-phase operation and guarantees smooth torque at the steering wheel

  • PDF

퍼지제어기를 이용한 엘리베이터 구동용 영구자석형 동기전동기의 속도제어 (Speed Control for PMSM in Elevator Drive System Using Fuzzy Controller)

  • 황선모;유재성;원충연;김규식;최세완
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.655-659
    • /
    • 2004
  • This paper proposes a fuzzy logic based vector control for the gearless traction machine drive systems using a permanent-magnet synchronous motor (PMSM). The performance of the proposed Fuzzy Logic Control(FLC)-based PMSM drive are investigated and compared to those obtained from the conventional PI controll-based drive system. We have confirmed theoretically and experimentally at different dynamic operating conditions such as step change in command speed, step change in load, etc. The comparative experimental results show that the FLC is more robust and, hence, found to be a suitable replacement of the conventional Pl controller for the high-performance elevator drive system.

  • PDF

Robust Speed Control of PMSM with Fuzzy Gain Scheduling

  • Won, Tae-Hyun;Kim, Mun-Soo;Park, Han-Woong;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.111.1-111
    • /
    • 2001
  • In this paper, a robust speed control is proposed for Permanent Magnet Synchronous Motor system. PMSM without reduction gear has been widely used in high performance application such as robots and machine tools. It is well known that the control performance of the PMSM is very sensitive to load disturbance and system parameter variation. The idea of the proposed speed controller based on combination of sliding mode control with fuzzy gain scheduling. The sliding mode controller leads to fast system dynamics of slight sensitivity to the load disturbance and system parameter variations, the fuzzy gain scheduling mechanism reduces the chattering phenomenon. The simulation results have proved that the proposed control scheme provides a robust control performance under load disturbance and system parameter variation.

  • PDF

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

Electrical Machines for High Speed Applications with a Wide Constant-Power Region Requirement

  • Gerada, David;Borg-Bartolo, David;Mebarki, Abdeslam;Micallef, Christopher;Brown, Neil L.;Gerada, Chris
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.274-281
    • /
    • 2012
  • This paper discusses the issues associated with the design of high speed machines for applications with a wide constant-power region requirement. Using described multi-domain design environments which put equal weight on the electromagnetic, thermal and mechanical considerations, the suitability and power density achievable using Induction Machines (IM) and Permanent Magnet Synchronous Machines (PMSM) are compared.

V/f 스칼라 제어 영구자석 동기 전동기의 안정적 초기 구동 기법 (A Stable Startup Method of V/f Scalar Controlled Permanent Magnet Synchronous Motors)

  • 김현성;이상민;이기복
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.395-403
    • /
    • 2020
  • This study presents a stable start-up strategy for v/f scalar-controlled permanent magnet synchronous motors (PMSMs). The v/f-controlled PMSMs easily lose synchronism under low-speed conditions if an insufficient stator voltage is applied to the machine due to errors in measured motor parameters and inverter nonlinearity, such as inverter dead time and on-state voltage drop. The proposed method adopts the I/f control method to ensure a stable start at low speeds and then switches to the v/f control method at medium speeds. A smooth transition method from I/f control to v/f control is proposed to minimize the oscillation of the stator current and rotor speed during transition. Moreover, the stability of the I/f and v/f control methods is analyzed using a small-signal model. Simulation and experimental results are provided to verify the performance of the proposed control strategy.

PMSM 드라이브의 효율 최적화 벡터제어 (Efficiency Optimization Control of PMSM)

  • 이홍균;이정철;정택기;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1143-1145
    • /
    • 2002
  • IPMSM (Interior Permanent Magnet Synchronous Motor) is widely used in many applications such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives. In order to maximize the efficiency in such applications, this paper is proposed the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The proposed control algorithm is applied to IPMSM drive system, the operating characteristics controlled by efficiency optimization control are examined in detail by simulation.

  • PDF