• 제목/요약/키워드: Permanent magnet machines

검색결과 220건 처리시간 0.038초

A Primary Permanent-Magnet Linear Motor for Urban Rail Transit

  • Cao, Ruiwu;Cheng, Ming;Mi, Chris;Hua, Wei;Zhao, Wenxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.54-60
    • /
    • 2012
  • In this paper, a new permanent-magnet (PM) linear motor is proposed, in which both the magnets and armature windings are placed in the short mover, while the long stator consists of iron core only. Hence, this new PM linear motor can be called a primary permanent-magnet linear motor. It exhibits the advantages of robustness, low cost, high efficiency, high power factor, and high thrust force density. It is especially suitable for long stator applications such as urban rail transit. In this paper, the topology and operation principle of this motor are discussed in detail. The steady-state characteristics including field distributions, flux-linkage, back-EMF, phase inductance and thrust force are investigated. In addition, the technique of skewing stator teeth is adopted to improve the electromagnetic performance. Results from finite element method (FEM) verified the theoretical analysis results.

Improved Torque Calculation of High Speed Permanent Magnet Motor with Compressor Loads Using Measured Power Factor Angle and Analytical Circuit Parameters

  • Choi, Jang-Young;Jang, Seok-Myeong;Lee, Sung-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.159-164
    • /
    • 2013
  • Difficulty of torque measurements in high-speed permanent magnet (HSPM) motors has necessitated the development of improved torque calculations. Hence, this paper presents an analytical torque calculation of a high speed permanent magnet (HSPM) motor based on the power factor angle. On the basis of analytical magnetic field solutions, the equations for circuit parameters such as back-emf and synchronous inductance are derived analytically. All analytical results are validated extensively by non-linear finite element (FE) calculations and measurements. The internal angle (${\delta}$) between the back-emf and the phase current is calculated according to the rotor speed by using analytical circuit parameters and the measured power factor because this angle is not measured but estimated in case of sensorless drive of the HSPM motor, significantly affecting torque calculation. Finally, the validity of the torque analysis method proposed in this paper is confirmed, by showing that the torque calculated on the basis of the internal angle is in better agreement with the measurements.

표면부착형 가변 자속 전동기의 설계 및 동특성 해석 (Design and Dynamic Aanlaysis of Surface-Mounted Type Variable Flux Machines)

  • 김정만;최장영;이규석;이성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.740-741
    • /
    • 2015
  • This paper presents the design and dynamic analysis of surface-mounted type variable flux permanent magnet(VFPM) machines. VFPM machines with a low-coercive-force (LCF) magnetic material have been studied extensively for their potential to improve the efficiency and extend the flux-weakening range of permaennt magnet (PM) machines. In order to implement the design of the VFPM machines effectively, we perform a characteristic analysis of the LCF magnet with respect to design parameters. The analysis results of the designed VFPM machines are compared with measured results, and the validity of the design of the VFPM machines is confirmed.

  • PDF

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.

영구자석 기기의 철손 예측을 위한 자계 거동 해석 (Magnetic Field Distribution Analysis for Core Loss Estimation of Permanent Magnet Machine)

  • 장석명;고경진;최장영;박지훈;이성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.93-95
    • /
    • 2008
  • Nowadays more attention is paid to the developing high efficiency electrical machines for energy saving and protection of natural resources. In general, the electromagnetic losses appearing in electrical machines are widely classified into copper loss, core loss and rotor loss. Particularly, in permanent magnet (PM) machines, core loss forms a larger portion of the total losses than in another machine. So, satisfactory prediction of core loss at the design or analysis stage of PM machines is essential to active high efficiency and high performance. This paper deals with analysis of magnetic field distribution due to geometry of stator core for magnetic core loss calculation of multi-pole PM synchronous machine.

  • PDF

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.

Analysis of an Interior Permanent-Magnet Machines with an Axial Overhang Structure based on Lumped Magnetic Circuit Model

  • Seo, Jangho;Seo, Jung-Moo
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.94-101
    • /
    • 2016
  • This paper shows a new magnetic field analysis of an interior permanent magnet (IPM) machines with an axial overhang structure wherein the rotor axial length exceeds that of the stator. The rotor overhang used to increase torque density of the radial flux machine is difficult to analyze because of extra consideration of axial direction, and thus it is general for machine designer to take 3-D finite element analysis (FEA) capable of considering both radial and axial complicated geometry in the machine. However, it requires too much computing time for preliminary design especially for optimization process. Therefore, in this paper a 2-D analytic method using a lumped magnetic circuit model (LMCM) is proposed to overcome the problem. For the analysis of overhang effect, the magnetic circuit is separated and solved from overhang and non-overhang regions respectively. For the validation of proposed concept, 3-D finite element analysis (FEA) is performed. From the analysis results, it is shown that our new proposed method presents good performance in terms of calculating electromotive force (EMF) and torque within a short time. Therefore, the proposed model can be useful in design of IPM with an overhang structure.

Electromagnetic Structure Design Study of Fault-Tolerant Interior Permanent Magnet Machines for Electric Vehicles Using Harmonic Order Shaping

  • Liu, Guohai;Zeng, Yu;Zhao, Wenxiang;Chen, Qian
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.561-569
    • /
    • 2016
  • Although pretty methods have been proposed to reduce torque ripple, they generally suffer from the decreased torque density. This paper will investigate the spoke-type interior permanent magnet (IPM) machine with shaping methods, including the sinusoidal (SIN), the inverse cosine (ICS), the sinusoidal with third harmonic (SIN+3rd), and the inverse cosine with third harmonic (ICS+3rd). In order to obtain low torque ripple and high torque density, the shaping method applied in rotor and stator at the same time, termed as the dual-shaping method, is proposed. This method is analytically derived and further confirmed by finite element method (FEM). It turns out that the ICS and ICS+3rd shaping methods are more suitable for outer rotors, while the SIN and the SIN+3rd shaping method should be used in inner stators. The original machine, the singular shaped machines and the dual-shaped machines on electromagnetic performances are compared for evaluation. The results verify that the dual-shaping method can improve torque density, whilst reducing torque ripple.

Effect of Magnetic Strength of Three-dimensionally Arranged Magnetic Barrel Machine on Polishing Characteristics

  • Zhang, Yu;Yoshioka, Masato;Hira, Shin-ichiro;Wang, Zhuqing
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.34-38
    • /
    • 2008
  • Commercially available magnetic barrel machines equipped with permanent magnets have certain limitations: work can only be finished effectively in limited areas of the container because permanent magnets are arranged two-dimensionally on the magnet disk. We overcame this problem by developing a new magnetic barrel machine equipped with a three-dimensional magnet arrangement. The effectiveness of the new machine has already been reported; this study improved the machine's polishing ability by changing the polarity of magnets on a magnet block. Polishing experiments confirmed the most effective arrangement of magnets on the magnet block. An alternating arrangement of north and south poles produced far superior polishing characteristics than a uniform arrangement of the same pole facing outward. Alternating polarity probably causes increased quantities of barrel media to work together. Finally, we introduced stronger permanent magnets to the magnet block, and found that the increased magnetic field also improved polishing ability.

Field Circuit Coupling Optimization Design of the Main Electromagnetic Parameters of Permanent Magnet Synchronous Motor

  • Zhou, Guang-Xu;Tang, Ren-Yuan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.88-93
    • /
    • 2008
  • The electromagnetic parameters of a permanent magnet synchronous motor (PMSM) such as the open load permanent magnet flux, d axis reactance $X_d$, and q axis reactance $X_q$, are most essential to the performance analysis and optimization design of the motor. Based on the numerical analysis of the 3D electromagnetic field, the three electromagnetic parameters of permanent magnet synchronous motors with U form interior rotor structures are calculated by FEA. The rules of the leakage coefficient and reactance parameters changing with the air gap length, permanent magnet magnetism length, and isolation magnetic bridge dimensions in the rotor are given. The calculated values agree well with the measured values. The FEA results are integrated with the self compiled electromagnetic design program to optimize the prototype motor. The tested performances of the prototype motor prove that the method is suitable for the optimization of motor structure.