Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.4.561

Electromagnetic Structure Design Study of Fault-Tolerant Interior Permanent Magnet Machines for Electric Vehicles Using Harmonic Order Shaping  

Liu, Guohai (School of Electrical and Information Engineering, Jiangsu University)
Zeng, Yu (School of Electrical and Information Engineering, Jiangsu University)
Zhao, Wenxiang (School of Electrical and Information Engineering, Jiangsu University)
Chen, Qian (School of Electrical and Information Engineering, Jiangsu University)
Publication Information
Abstract
Although pretty methods have been proposed to reduce torque ripple, they generally suffer from the decreased torque density. This paper will investigate the spoke-type interior permanent magnet (IPM) machine with shaping methods, including the sinusoidal (SIN), the inverse cosine (ICS), the sinusoidal with third harmonic (SIN+3rd), and the inverse cosine with third harmonic (ICS+3rd). In order to obtain low torque ripple and high torque density, the shaping method applied in rotor and stator at the same time, termed as the dual-shaping method, is proposed. This method is analytically derived and further confirmed by finite element method (FEM). It turns out that the ICS and ICS+3rd shaping methods are more suitable for outer rotors, while the SIN and the SIN+3rd shaping method should be used in inner stators. The original machine, the singular shaped machines and the dual-shaped machines on electromagnetic performances are compared for evaluation. The results verify that the dual-shaping method can improve torque density, whilst reducing torque ripple.
Keywords
torque ripple; torque density; permanent magnet machine; shaping methods; finite element analysis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 M. Z. Ahmad, E. Sulaiman, and T. Kosaka, J. Magn. 20, 265 (2015).   DOI
2 D. W. Chung and Y. M. You, J. Magn. 20, 176 (2015).   DOI
3 W. P. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, IEEE Trans. Ind. Electron. 59, 3523 (2012).   DOI
4 F. Parasiliti, M. Villani, S. Lucidi, and F. Rinaldi, IEEE Trans. Ind. Electron. 59, 2503 (2012).   DOI
5 G. Pellegrino, A. Vagati, P. Guglielmi, and B. Boazzo, IEEE Trans. Ind. Electron. 59, 803 (2012).   DOI
6 Q. Chen, G. Liu, W. Zhao, L. Sun, M. Shao, and Z. Liu, IEEE Trans. Ind. Electron. 61, 6615 (2014).   DOI
7 W. Zhao, M. Cheng, K. T. Chau, J. Ji, and R. Cao, IEEE Trans. Ind. Electron. 60, 151 (2013).   DOI
8 W. Zhao, M. Cheng, X. Zhu, W. Hua, and X. Kong, IEEE Trans. Ind. Electron. 55, 1739 (2008).   DOI
9 W. Zhao, K. T. Chau, M. Cheng, J. Ji, and X. Zhu, IEEE Trans. Ind. Electron. 57, 2134 (2010).   DOI
10 W. Zhao, M. Cheng, W. Hua, H. Jia, and R. Cao, IEEE Trans. Ind. Electron. 58, 1926 (2011).   DOI
11 S. A. Hong, J. Y. Choi, and S. M. Jang, J. Magn. 19, 84 (2014).   DOI
12 Z. Azar, Z. Q. Zhu, and G. Ombach, IEEE Trans. Magn. 48, 2650 (2012).   DOI
13 S. H. Lee, Y. J. Kim, K. S. Lee, and S. J. Kim, J. Magn. 20, 444 (2015).   DOI
14 J. H. Kim, J. M. Seo, H. K. Jung, and C. Y. Won, J. Magn. 19, 411 (2014).   DOI
15 H. S. Chen, D. G. Dorrell, and M. C. Tsai, IEEE Trans. Magn. 46, 3664 (2010).   DOI
16 K. Wang, Z. Q. Zhu, and G. Ombach, IEEE Trans. Magn. 50, 8100210 (2014).
17 K. Wang, Z. Q. Zhu, G. Ombach, and W. Chlebosz, IEEE Trans. Ind. Electron. 61, 5047 (2014).   DOI