• 제목/요약/키워드: Permanent magnet eddy current loss

검색결과 46건 처리시간 0.031초

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.

영구자석 브러시리스 AC 모터의 와전류 손실 특성해석 (Eddy Current Loss Analysis of the Permanent Magnet Brushless AC Motor)

  • 장석명;조한욱;이성호;정연호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.700-702
    • /
    • 2002
  • High-speed brushless permanent magnet machines are good for compressor and aerospace applications, etc. since they are conductive to high efficiency, high power density, small size and low weight. This paper presents 3-phase permanent magnet brushless AC Motor designed for the high-speed drives. Especially, we predicted the inverter high frequency pulse width modulation (PWM) switching caused eddy current losses in a permanent magnet brushless dc motor.

  • PDF

프라이자흐 모델과 유한요소법을 이용한 C.P.M의 착자 특성 해석 (Magnetizing Analysis of a Convergence Purity Magnet using Preisach model and Finite Element Method)

  • 윤태호;권병일;박승찬;우경일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권11호
    • /
    • pp.729-736
    • /
    • 2000
  • This paper deals with the characteristic analysis of magnetizer for convergence purity magnet by the finite element method. The analysis utilizes combined method of the time-stepped finite element analysis and the Preisach model with hysteresis phenomena. In the finite element analysis, the non-linearity and the eddy current of the magnetizing fixure and permanent-magnet are taken account. The magnetization distribution in the permanent magnet is determined by using Preisach model which are composed of Everett function table and the first order transition curves is obtained by the Vibrating Sample Magnetometer. The calculated flux density values on the surface of the permanent magnet are led to the approximated gauss density values measured by the gauss meter. As a result, winding current, copper loss, eddy current loss of the magnetizing yoke, flux plot, surface gauss plot, temperature rise of the coil and resistor variation, vector diagram of magnetization distribution are shown.

  • PDF

Investigation on Performance Characteristics of IPM for Electric Vehicles Considering Driving Conditions and Pole-Slot Combinations

  • Seo, Jangho
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.268-275
    • /
    • 2013
  • This paper shows the characteristics of performance for interior permanent magnet machine (IPM) considering driving conditions such as maximum torque per ampere (MTPA) and flux-weakening control especially in terms of harmonic loss. In particular, based on finite element analysis (FEA), permanent magnet (PM) eddycurrent loss and the harmonic iron loss have been computed where the models have been intentionally designed to identify the effects of pole-slot combinations on the loss while maintaining the required power for electric vehicle. From the analysis results, it was shown that the rotor iron loss and PM eddy-current loss of machine employing fractional slot winding are extremely large at load condition. Furthermore, it was revealed that the harmonic iron loss at high-speed operation is mainly distributed over stator teeth and rotor surface, which may aggravate cooling system of the rotor structure in the vehicle.

다극 회전자를 갖는 영구자석 동기 발전기의 회전자 손실 예측을 위한 해석적 접근 (Analytical Approach for Rotor Loss Prediction of Permanent Magnet Synchronous Generator with Multi-Pole Rotor)

  • 장석명;김현규;최장영;고경진;성태현;김일중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.719-720
    • /
    • 2008
  • This paper deals with analytical approach for rotor loss prediction of permanent magnet synchronous generator(PMSG). The rotor losses of synchronous generator are induced by the magnets. Since stator of our model is skewed, slotting effect can be negligible for our PM wind turbine generator. In order to calculate eddy current, this paper derives analytical solutions by the magnetic vector potential. Finally this paper compared analytical result with eddy current density obtained from finite element(FE) calculations using phase current harmonics analysis.

  • PDF

영구자석형 고속모터의 자화패턴에 따른 회전자 손실 해석 (The Influence of Magnetization Pattern on the Rotor Losses of Permanent Magnet High-Speed Machines)

  • 장석명;조한욱;최장영;양현섭;류동완
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.9-11
    • /
    • 2003
  • This paper deals with the comparison of rotor eddy current losses In two types of permanent magnet high-speed machines. The analytical method and two dimensional finite element analysis have been used to evaluate the rotor eddy current loss with the rotor magnetization Pattern. It is shown that the Halbach array produce rotor loss less than parallel magnetization.

  • PDF

영구자석 고속모터의 고조파 분석을 통한 회전자 손실해석 (Calculation of Rotor Loss according to analysis of Harmonics for Permanent Magnet High Speed Motor)

  • 장석명;조한욱;이성호;양현섭;정연호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1042-1044
    • /
    • 2003
  • High speed PM machines are being developed as motor/generators for gas-turbine generator sets in smaller power sizes, and as motors for number of applications including gas compressors, machine tools and turbo molecular pumps. Due to the high peripheral speed of the rotor and the relatively high conductivity of the magnets used, rotor eddy current loss can be substantial. This paper deals with the calculation of rotor eddy-current losse in permanent magnet(PM) high speed motor using the analysis of harmonics.

  • PDF

A Study on the Iron Losses in Flux-Switching Permanent Magnet Machines

  • Shin, Heung-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.699-703
    • /
    • 2018
  • Flux-switching permanent magnet machines (FSPMM) have doubly-salient and simple structures making it cost effective and suitable for mass production. In addition, it is possible to increase the rotor rotating speed and concentrate the flux of the permanent magnet on the air-gap. Due to these merits, the FSPMM can be applied to the various industry applications. To improve the performance, various design variables need to be studied in terms of design techniques. In this paper, we especially concentrate on the distribution of iron losses using a two-dimensional finite-element method (2D FEM). As a result, we can get an information for high efficiency FSPMM design.

Numerical Analysis on Iron Loss and PM Loss of Permanent Magnet Synchronous Motor Considering the Carrier Harmonics

  • Lee, Dongsu;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.216-219
    • /
    • 2013
  • In this paper, the influence of inverter switching harmonics on iron loss and PM loss of Permanent Magnet Synchronous Motor (PMSM) is numerically investigated by Finite Element Method (FEM). In particular, nonlinear FEM is applied for a multi-layered PM Synchronous Motors (PMSMs), Interior buried PMSM (IPMSM) and PM assisted Synchronous Reluctance Motor (PMa-SynRM), which are adoptively designed and compared for Electric Vehicle (EV) propulsion. In particular, iron loss and PM eddy-current loss under the real current waveform including the carrier harmonics from inverter switching are numerically analyzed with nonlinear FEM by considering the skewed stator structure employed for minimizing spatial harmonics.

Preliminary study on a 3D field permanent magnet flux switching machine - from tubular to rotary configurations

  • Wang, Can-Fei;Shen, Jian-Xin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.505-508
    • /
    • 2012
  • A permanent magnet flux switching (PMFS) machine has a simple rotor, whilst both magnets and coils are set in the stator, resulting in easy removal of heat due to both copper loss and eddy current loss in magnets. However, the volume of magnets used in PMFS machines is usually larger than in conventional PM machines, and leakage flux does exist at the non-airgap side. To make full use of the magnets and gain higher power density, a novel 3-dimensional (3D) field PMFS machine is developed. It combines merits of the tubular linear machine, external-rotor rotary machine and axial-flux rotary machine, hence, offers high power density and peak torque capability, as well as efficient utility of magnets owing to the unique configuration of triple airgap fields.