• Title/Summary/Keyword: Permanent Magnet Synchronous Motors

Search Result 282, Processing Time 0.026 seconds

A Study on the Reduction of Cogging Force of Stationary Discontinuous Armature Linear Synchronous Motor Using Auxiliary Teeth

  • Kim, Yong-Jae;Lee, Kyu-Myung;Watada, Masaya
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the high alteration of the outlet edge cogging force produced between the armature's core and the mover's permanent magnet when a mover passes the boundary between the armature's installation part and non-installation part has been indicated as a problem. Therefore, we have examined the outlet edge cogging force by installing the auxiliary teeth at the armature's outlet edge in order to minimize the outlet edge cogging force generated when the armature is arranged discontinuously. Moreover, we obtained the calculation by analyzing the shape of the auxiliary teeth in which the outlet edge cogging force is minimized the most.

Position Control of Permanent Magnet Synchronous Motor Using Model Following (영구자석 동기전동기의 모델 추종 위치제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Ki-Yong;Lee, I.Y.;Yoon, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.160-163
    • /
    • 1991
  • Permanent Magnet Synchronous Motor(PMSM) has merits in both simple electrical controllability of dc motor and mechanical reliability of ac motor by applying vector control. The vector control method orients the armature current phasor to be perpendicular to the permenant magnet rotor flux in a two-axis coordinate frame, and provides control characteristics that are similar to those of separately excited dc motors. This paper presents a simple model following scheme for position control of PMSM fed by hysteresis current-controlled PWM inverter. The simulation results show the validity of the proposed control method.

  • PDF

Development of Inter Turn Short Fault Model of IPM Motor (IPM모터의 턴쇼트 고장모델에 관한 연구)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • In this study, inter-turn short fault models of interior permanent magnet synchronous motors (IPMSM) are developed by adding saliency modeling to surface-mounted permanent magnet motor models. The saliency model is obtained using the deformed flux models based on both fault-winding flux information and inductance variations caused by cross-flux linkages that depend on the distribution of the same phase windings. By assuming the balanced three-phase current injection, we obtain the positive and negative sequence voltages and the fault current in the positive and the negative synchronous reference frames. The output torque model is developed by adding the magnet and the reluctance torque, which are derived from the developed models. To verify the proposed IPMSM model with an inter-turn short fault, finite element method-based simulation and experimental measurement results are presented.

Optimal Rotor Shape Design of Asymmetrical Multi-Layer IPM Motors to Improve Torque Performance Considering Irreversible Demagnetization

  • Mirazimi, M.S.;Kiyoumarsi, A.;Madani, Sayed M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1980-1990
    • /
    • 2017
  • A study on the multi-objective optimization of Interior Permanent-Magnet Synchronous Motors (IPMSMs) with 2, 3, 4 and 5 flux barriers per magnetic pole, based on Genetic Algorithm (GA) is presented by considering the aspect of irreversible demagnetization. Applying the 2004 Toyota Prius single-layer IPMSM as the reference machine, the asymmetrical two-, three-, four- and five-layer rotor models with the same amount of Permanent-Magnets (PMs) is presented to improve the torque characteristics, i.e., reducing the torque pulsation and increasing the average torque. A reduction of the torque pulsations is achieved by adopting different and asymmetrical flux barrier geometries in each magnetic pole of the rotor topology. The demagnetization performance in the PMs is considered as well as the motor performance; and analyzed by using finite element method (FEM) for verification of the optimal solutions.

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

Core-loss Reduction on Permanent Magnet for IPMSM with Concentrated Winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • Interior Permanent Magnet Synchronous motors (IPMSM) with concentrated winding are superior to distributed winding in the power density point of view. But it causes huge amount of eddy current losses on the permanent magnet. This paper presents the optimal permanent magnet V-shape on the rotor of an interior permanent magnet synchronous motor to reduce the core losses and improve the performance. Each eddy current loss on permanent magnet has been investigated in detail by using FEM (Finite Element Method) instead of equivalent magnetic circuit network method in order to consider saturation and non-linear magnetic property. Simulation-based design of experiment is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, it is verified by FEM.

LMI-based Sliding Mode Speed Tracking Control Design for Surface-mounted Permanent Magnet Synchronous Motors

  • Leu, Viet Quoc;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.513-523
    • /
    • 2012
  • For precisely regulating the speed of a permanent magnet synchronous motor system with unknown load torque disturbance and disturbance inputs, an LMI-based sliding mode control scheme is proposed in this paper. After a brief review of the PMSM mathematical model, the sliding mode control law is designed in terms of linear matrix inequalities (LMIs). By adding an extended observer which estimates the unknown load torque, the proposed speed tracking controller can guarantee a good control performance. The stability of the proposed control system is proven through the reachability condition and an approximate method to implement the chattering reduction is also presented. The proposed control algorithm is implemented by using a digital signal processor (DSP) TMS320F28335. The simulation and experimental results verify that the proposed methodology achieves a more robust performance and a faster dynamic response than the conventional linear PI control method in the presence of PMSM parameter uncertainties and unknown external noises.

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Torque Ripple Reduction of Interior Permanent-Magnet Synchronous Motors Driven by Torque Predictive Control (토크예측제어를 이용한 매입형 영구자석 동기전동기의 토크리플저감기법)

  • Kim, Hyunseob;Han, Jungho;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.102-109
    • /
    • 2013
  • In this paper, a new torque predictive control method of interior permanent magnet synchronous motor is developed based on an extended rotor flux. Also, a duty ratio prediction method is proposed and allows the duty ratio of the active stator voltage vector to be continuously calculated. The proposed method makes it possible to relatively reduce the torque ripple under the steady state as well as to remain the good dynamic response in the transient state. With the duty ratio prediction method, the magnitude and time interval of the active stator voltage vector applied can be continuously controlled against the varying operation conditions. This paper shows a comparative study among the switching table direct torque control(DTC), the SVM-DTC, conventional torque predictive control, and the proposed torque predictive control. Simulation results show validity and effectiveness of this work.

Sensorless Vector Control for Non-salient Permanent Magnet Synchronous Motors using Programmable Low Pass Filter (프로그래머블 저역통과 필터를 이용한 비돌극형 영구자석 동기전동기 센서리스 벡터제어)

  • Yu, Jae-Sung;Lee, Dong-Yup;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.74-81
    • /
    • 2006
  • This paper proposes the sensorless vector control scheme of a Non-salient permanent-magnet synchronous motor (SPMSM) using programmable low pass filter (PLPF) to estimate a stator flux with the information of a rotor position and speed. The sesorless vector control of PMSM using PLPF can solves the dc drift problem associated with a pure integrator and a LPF. Also, the PLPF has the phase and gain compensator to estimate exactly rotor position and speed. Therefore, the information of a position and speed is exactly estimated because the drift and offset problems are solved by the PLPF. The experimental results show good performance over the 10[%] of the rated speed and under load condition.