• Title/Summary/Keyword: Permanent Magnet Synchronous Generation

Search Result 99, Processing Time 0.024 seconds

Development and Testing of Next Generation Electric Vehicle Propulsion System (차세대전동차 추진시스템 개발 및 시험)

  • Lee, Jang-Mu;Lee, Han-Min;Kim, Gil-Dong;Kno, Ae-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2194-2195
    • /
    • 2011
  • The propulsion system of next generation electric vehicle is different from the structure and control methods compared with conventional induction motor vehicles by applying an interior permanent magnetic synchronous motor. Permanent magnet motor should be controlled by each individual motor, propulsion device have 1C1M structure by a single inverter to control a single motor.

  • PDF

Modeling and Analysis of Leakage Currents in PWM-VSI-Fed PMSM Drives for Air-Conditioners with High Accuracy and within a Wide Frequency Range

  • Sun, Kai;Lu, Yangjun;Xing, Yan;Huang, Lipei
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.970-981
    • /
    • 2016
  • Leakage currents occur in pulse-width-modulated voltage source inverter (PWM-VSI)-fed permanent magnet synchronous motor (PMSM) drives for air-conditioners, which seriously affect system safety and operation performance. High accuracy modeling and prediction of leakage currents are key issues for the design and implementation of air-conditioning products. In this study, the generation mechanism of leakage currents is discussed. A systematic modeling approach of leakage currents is proposed, including the modeling of leakage current sources and leakage current paths. By using the proposed approach, the complete model of leakage currents in PWM-VSI-fed PMSM drives for air-conditioners has been developed based on the extraction of all parameters. A comparison between the simulated leakage currents based on the developed model and measured leakage currents in the outdoor unit of an air-conditioning product is conducted. The comparison verifies the effectiveness of the proposed modeling approach, and the developed model exhibits high accuracy within a wide frequency range.

A Study on Frequency Control and Active Power Control of Wind Turbine Generation System for PMSG (PMSG 풍력발전 시스템의 출력 제어 및 주파수 제어 연구)

  • Lee, Kwang-Soo;Kim, Mun-Kyeom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.597-607
    • /
    • 2014
  • This paper proposes active power control and frequency support control schemes of wind turbine generation system by using modified Maximum Power Point Tracking(MPPT) of Permanent Magnet Synchronous Generator(PMSG). Most wind turbine generation system is completely decoupled from the power system and power output control with pitch control. According to the frequency deviation, however, MPPT control can not contribute to the frequency change of the power system due to its active power output control. For solving this, the de-loaded(DL) control scheme is constructed for the frequency support control, which is based on applying the active power output control in the rotor speed control of PMSG. The rotor speed by used in the proposed DL control scheme is increased more than the optimal rotor speed of MPPT, and then this speed improvement increases the saved kinetic energy(KE). In order to show the effectiveness of the proposed control scheme, the case studies have been performed using the PSCAD/EMTDC. The results show that the proposed active power output control scheme(DL control and KE discharge control) works properly and the frequency response ability of the power system can be also improved with the frequency support of wind farm.

Improved back-EMF of 30kW Interior Permanent Magnet Synchronous Generator for Small Hydropower Generation (소수력 발전용 30kW급 매입영구자석형 동기발전기의 역기전력 개선)

  • Kim, Daekyong;Jeong, Hak-Gyun;Park, Han-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.660-665
    • /
    • 2014
  • This paper presents the improved back-EMF of Interior Permanent Magnet Synchronous Generator(IPMSM) for small hydropower generator. To improve back-EMF characteristics, the size and position of notch are applied to the rotor. In addition, parametric analysis of the notch size and position was performed. Finally, the back-EMF characteristic analysis are confirmed by the experimental results.

Simulation for Voltage Variation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems on Simulink (Simulink에서 영구자석 동기형 풍력발전시스템의 전압변동에 대한 시뮬레이션)

  • An, Hae-Joon;Kim, Hyun-Goo;Kim, Hong-Woo;Jang, Gil-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • This study performs modelling and simulation of permanent magnetic synchronous generator wind turbine by using Matlab & Simulink. In simulation, change of wind velocity, change of load, and voltage decrease of infinite bus are performed. Through such simulation, different with wiring system that there is only existing load, this study can confirm problems and voltage changing characteristics, which can occur in distributed electric power that load and electric power is mixed and operated, especially, in interconnecting with wind power generation.

  • PDF

ON-OFF' Current Control Method with Frequency Limiter and Operating Characteristics of Brushless DC Motors Using Resolver (리졸버를 사용한 브러쉬 없는 직류전동기의 운전특성과 주파수 제한기를 가진 'ON-OFF'전류제어 방식)

  • 홍성수;권봉환;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.9
    • /
    • pp.396-402
    • /
    • 1986
  • Although the structure of the brushless DC motor is similar to the one of the permanent magnet synchronous motor, its operating characteristics are the same as those of the permanent magnet DC motor. This is the reason that the commutators and brushes in the permanent magnet DC motor can be replaced by the power semiconductor devices and rotor position sensors for the brushless DC motor. In this paper, a current control method is presented to make a sinusoidal current waveform for constant torque generation and the operating characteristics of the brushless DC motor using the resolver as the rotor position sensor is also presented and experimented.

  • PDF

Development of 10kW Permanent Magnet Synchronous Generator for Small Hydropower Generation (소수력 발전용 10kW급 영구자석형 동기발전기 개발)

  • Jeong, Hak-Gyun;So, Ji-Young;Chung, Dong-Hwa;Ahn, Kang-Soon;Cho, Chong-Hyoun;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.44-52
    • /
    • 2013
  • This paper presents the development of 10 kW permanent magnet synchronous generator (PMSG) for small hydropower plants considering flow rates and net head. The initial and detailed design are determined using a load distribution method (LDM) which is a well-known method for designing an electric machine and a 2D-FEA which is performed for more accurate analysis of PMSG. The characteristic analysis results of proposed model with straight line magnet are satisfied with the initial model with curved magnet. Finally, the analysis and the design results are confirmed by the experimental results.

Modeling and Voltage Variation Simulation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems (영구자석 동기형 풍력발전시스템 모델링 및 전압변동 시뮬레이션)

  • Kim, Hong-Woo;An, Hae-Joon;Jang, Gil-Soo;Kim, Sung-Soo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.116-123
    • /
    • 2009
  • This study performs modelling and simulation of permanent magnetic synchronous generator wind turbine by using Matlab & Simulink. In simulation, change of wind velocity, change of load, and voltage decrease of infinite bus are performed. Through such simulation, different with wiring system that there is only existing load, this study can confirm problems and voltage changing characteristics, which can occur in distributed electric power that load and electric power is mixed and operated, especially, in interconnecting with wind power generation.

Control and Analysis of Vienna Rectifier Used as the Generator-Side Converter of PMSG-based Wind Power Generation Systems

  • Zhao, Hongyan;Zheng, Trillion Q.;Li, Yan;Du, Jifei;Shi, Pu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.212-221
    • /
    • 2017
  • Permanent-Magnet Synchronous Generators (PMSGs) are used widely in Wind Power Generation Systems (WPGSs), and the Vienna rectifier was recently proposed to be used as the generator-side converter to rectify the AC output voltage in PMSG-based WPGS. Compared to conventional six-switch two-level PWM (2L-PWM) converters, the Vienna rectifier has several advantages, such as higher efficiency, improved total harmonic distortion, etc. The motivation behind this paper is to verify the performance of direct-driven PMSG wind turbine system based-Vienna rectifier by using a simulated direct-driven PMSG WPGS. In addition, for the purpose of reducing the reactive power loss of PMSGs, this paper proposes an induced voltage sensing scheme which can make the stator current maintain accurate synchronization with the induced voltage. Meanwhile, considering the Neutral-Point Voltage (NPV) variation in the DC-side of the Vienna rectifier, a NPV balancing control strategy is added to the control system. In addition, both the effectiveness of the proposed method and the performance of the direct-driven PMSG based-Vienna rectifier are verified by simulation and experimental results.

RTDS based Transient Analysis of PMSG Type wind Power Generation System (RTDS를 이용한 영구자석형 동기발전기를 갖는 풍력발전시스템의 과도현상 해석)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Kim, Nam-Won;Lee, Hyo-Guen;Seo, Hyo-Ryong;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.572-576
    • /
    • 2011
  • The operation of permanent magnet synchronous generator (PMSG) type wind power generation system (WPGS) can be affected by the utility condition. Consequently, transient condition of utility should be analyzed for the safe and reliable operation of WPGS. This paper presents transient analysis results of a PMSG type WPGS using real time digital simulator (RTDS). A fault condition was applied to the transient analysis of PMSG type WPGS as the transient grid condition. The simulation results were analyzed to show the operational characteristic of PMSG type WPGS under the transient phenomenon of utility.