• 제목/요약/키워드: Permanent Magnet Double-Sided Linear Synchronous Motor

검색결과 7건 처리시간 0.026초

수직배열형 양측식 영구자석 선형 동기전동기의 설계 및 해석 (Design and Analysis of Permanent Magnet Double-Sided Linear Synchronous Motor with Perpendicular Arrangement)

  • 김창업;이성호
    • 조명전기설비학회논문지
    • /
    • 제27권9호
    • /
    • pp.62-73
    • /
    • 2013
  • In this paper, a new linear synchronous motor - permanent magnet double-sided synchronous motor with perpendicular arrangement (PMDLSM), was proposed. It was designed to account for the drawbacks of conventional linear motors, such as the normal force and end effects. The detent force and the thrust were analyzed for different combinations of primary core modules and magnet poles of the machine, and the optimum combination was made. The characteristics of the perpendicular PMDLSM were analyzed by finite element method, and the experiments agreed well with the analysis.

반응표면법을 이용한 수직배열형 양측식 영구자석 선형 동기전동기의 최적설계 (Optimum Design of a Perpendicular Permanent Magnet Double-sided Linear Synchronous Motor using Response Surface Method)

  • 김창업
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.26-30
    • /
    • 2016
  • This paper presented an optimum design of a perpendicular PMDSLSM (Permanent Magnet Double-sided Linear Synchronous Motor) to minimize the detent force. As an optimum method, the response surface method was used and 3D finite element method for the calculation. The design variables of the machine were the primary core width and thickness, and magnet width, thickness and length. Object functions were to minimize the detent force and maximize the thrust of the basic model. The results showed that the thrust force of the optimum design increased from 82.1N to 90.2N and detent force decreased from 15.2N to 2.8N, respectively, compared to the basic model.

Coordinated Control of an Independent Multi-phase Permanent Magnet-type Transverse Flux Linear Machine Based on Magnetic Levitation

  • Hwang, Seon-Hwan;Kwon, Soon-Kurl;Hwang, Young-Gi;Bang, Deok-Je
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.95-102
    • /
    • 2014
  • This paper proposes a coordinated control for an independent multi-phase transverse flux linear synchronous motor (IM-TFLSM) based on magnetic levitation. The stator structures of the IM-TFLSM are composed of a two set, which has independent three-phase windings and a double-sided air-gap as opposed to the conventional Y-connected three-phase linear motors. A suitable control algorithm is necessary to operate the applied linear machine. This study proposes a coordinated control algorithm for adjusting the mover air-gap and thrust force of the IM-TFLSM in order to maintain air-gap and phase shifted current control of the independent 3-phase modules. In addition, the principle of operation and its special structures are described in detail and the validity and effectiveness of the control algorithm is verified through multiple experimental results.

반응표면법을 이용한 양측 철심형 영구자석 선형 동기기의 구조 최적화 (Structure Optimization of Double-Sided Iron-Core Type Permanent Magnet Linear Synchronous Machine Using Response Surface Method)

  • 이상건;주옥오;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1210-1211
    • /
    • 2011
  • The inherent drawback of iron-core type permanent magnet linear synchronous motor (PMLSM) is detent force that is dependent on several major factors such as PM length, slot clearance, and skewing. To minimize the detent force, this paper proposes a structure optimization using the combination computation of two dimensional (2-D) finite element analysis (FEA) and response surface methodology (RSM). The RSM, that is a collection of the statistical and mathematical techniques, is utilized to predict the global optimal solution based on the FEA calculated results of the detect forces for different combinations of factors. With the help of the combination computation the high capacity iron-core type PMLSM with more than 12000 N propulsion forces only contains less than 3 N detent forces.

  • PDF

보조치 및 Offset 적용에 따른 양측식 PMLSM의 추력 특성 연구 (The study of characteristics to thrust of double sided PMLSM apply to auxiliary teeth and offset)

  • 김선종;정상용;김용재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.837-838
    • /
    • 2015
  • 본 논문에서는 양측식 영구자석 선형 동기 전동기(Permanent Magnet Linear Synchronous Motor: 이하 PMLSM)의 전기자 분산배치를 위해 전기자에 보조치 및 Offset에 의해 나타나는 단부 코깅력을 해석하였다. 또한 가장 낮은 단부 코깅력을 가지는 Offset 위치에 대하여 역기전력을 분석하였으며 이에 따른 추력 특성에 대한 고찰을 수행하였다.

  • PDF

Ropeless 엘리베이터 시스템용 영구자석 선형동기전동기 구조에 관한 연구 (A Selection of PM-LSM Topology Structure for Ropeless Elevator System)

  • 진상민;정군석;주옥오;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.973.1_974.1
    • /
    • 2009
  • One of the most important technical improvement required for ropeless elevator system to become practical is the improvements in overall system efficiency. Moreover, the predominant drawback of permanent magnet (PM) linear synchronous motor (LSM) is large detent force. Therefore, for the given volume the selection of high power density PM-LSM with low detent force is very imperative. In this paper, we will investigate the characteristics of thrust and detent force of PM-LSM under different motor topology structure. Finally, the long stator double-sided iron core type PM-LSM with fractional slot winding is the best choice for the ropeless elevator system.

  • PDF

The Improved Design of Double Sided Coreless PMLSM with Consideration of Rising Winding Temperature

  • An, Ho-Jin;Cho, Gyu-Won;Jang, Ki-Bong;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.144-149
    • /
    • 2013
  • This work deals with the optimal design of a coreless PMLSM (Permanent Magnet Linear Synchronous Motor) with consideration of rising winding temperature. The temperature distribution caused by copper loss in the coreless PMLSM was analyzed using a FEM (Finite Element Method). The thrust and current density where the winding temperature reaches the allowable temperature were calculated. The optimal model provides maximum thrust per unit weight.