• 제목/요약/키워드: Permanent Magnet AC Motor

검색결과 84건 처리시간 0.027초

퍼지 제어기를 이용한 영구 자석 교류 전동기의 센서리스 속도 제어 (Sensorless Speed Control of Permanent Magnet AC Motor using Fuzzy Logic Controller)

  • 최성대;고봉운;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.524-527
    • /
    • 2003
  • This paper proposes speed control system using a Fuzzy Logic Controller(FLC) in order to realize the speed control of Permanent Magnet AC Motor with no sensor. FLC based MRAS(Model Reference Adaptive System) estimates the speed of Permanent Magnet AC Motor. Using the estimated speed, speed control is performed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

Full digital control of permanent magnet AC servo motors

  • Lee, Jin-Won;Kim, Dong-Il;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.218-223
    • /
    • 1993
  • In this paper, we present a full digital control scheme which controls currents and speed of the permanent magnet AC servo motor with large range of bandwidth and high performance. The current equations of the permanent magnet AC servo motor are linearized by feedback linearization technique. Both acceleration feedforward terms and IP controllers, whose gains are functions of motor speed, are used in order to control motor currents. In addition the phase delays in current control loops are compensated by placing phase lead-lag compensators after current commands, which make it possible to avoid high gains in the current controllers. Unity power factor can be achieved by the proposed current controller. Pulsewidth modulation is performed by way of the well-known comparison with a triangular carrier signals. The velocity controller is designed on the basis of the linearized model of the permanent magnet AC servo motor by the proposed current controller. The performance of the entire control system is analyzed in the presence of uncertainty in the motor parameters. The proposed control scheme is implemented using the digital signal processor-based controller composed of an Analog Device ADSP 2111 and a NEC78310. The pulsewidth modulation (PWM) signals are generated through a custom IC, SAMSUNG-PWM1, which has the outputs of current controllers as input. The experimental results show that the permanent magnet AC servo motor can be always driven with high dynamic performance by the proposed full digital control scheme of motor speed and motor current.

  • PDF

영구자석 브러시리스 AC 모터의 와전류 손실 특성해석 (Eddy Current Loss Analysis of the Permanent Magnet Brushless AC Motor)

  • 장석명;조한욱;이성호;정연호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.700-702
    • /
    • 2002
  • High-speed brushless permanent magnet machines are good for compressor and aerospace applications, etc. since they are conductive to high efficiency, high power density, small size and low weight. This paper presents 3-phase permanent magnet brushless AC Motor designed for the high-speed drives. Especially, we predicted the inverter high frequency pulse width modulation (PWM) switching caused eddy current losses in a permanent magnet brushless dc motor.

  • PDF

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.

표면부착형 영구자석 전동기의 정현파 공극자속밀도 연구 (A Study on Sinewave Air Gap Flux Density of Surface Type Magnet Motor)

  • 김현철;김장목;김철우
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1571-1576
    • /
    • 2007
  • This report describes the analytical characteristic of sinewave air gap flux density for the brushless AC motor with surface permanent magnet. The analysis of sinewave air gap flux density is the key to expect the performance of back EMF for the design of brushless AC motor. The numerical analysis and FEM analysis are performed to adopt radial and parallel flux magnetization of magnet on the rotor. And it is also executed to vary the magnet arc angle and arc radius for the condition of constant and non constant air gap. This report is focused on the characteristic of sinewave air gap flux density for permanent magnet of surface brushless AC motor. This results also have more reliable data against the previous paper which had the representative numerical analysis of air gap flux density[1][2].

브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법 (A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

단일 인버터를 이용한 표면 부착형 영구자석 동기 전동기 병렬 구동 시스템의 센서리스 구동 방법 (Sensorless Drive for Mono Inverter Dual Parallel Surface Mounted Permanent Magnet Synchronous Motor Drive System)

  • 이용재;하정익
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.38-44
    • /
    • 2015
  • This paper presents the sensorless drive method for mono inverter dual parallel (MIDP) surface mounted permanent magnet synchronous motor (SPMSM) drive system. MIDP motor drive system is a technique that can reduce the cost of the multi motor driving system. To maximize this merit of the MIDP motor drive system, the sensorless technique is essential to eliminate the position sensors. This paper adopts an appropriate sensorless method for MIDP SPMSM drive system, which uses the reduced order observer and phase locked loop (PLL) to reduce the calculation burden. The I-F control method is implemented for start-up and low speed operation. The validity and performance of the proposed algorithm are shown via experiments with 600-W SPMSMs.

퍼지 제어기를 이용한 영구자석 교류전동기의 센서리스 속도제어 (Sensorless Speed Control of Permanent Magnet AC Motor Using Fuzzy Logic Controller)

  • 최성대;고봉운;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.389-394
    • /
    • 2004
  • This paper proposes a speed estimation method using FLC(Fuzzy Logic Controller) in order to realize the speed control of PMAM(Permanent Magnet AC Motor) with no speed sensor. This method uses FLC as a adaptive laws of MRAS(Model Reference Adaptive System) and estimates the rotor speed of PMAM with a difference between the reference model and the adjustable model. Speed control is performed by PI controller with the estimated speed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

Design and Implementation of a Reverse Matrix Converter for Permanent Magnet Synchronous Motor Drives

  • Lee, Eunsil;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2297-2306
    • /
    • 2015
  • This paper presents the development of a system with a reverse matrix converter (RMC) for permanent magnet synchronous motor (PMSM) drive and its effective control method. The voltage transfer ratio of the general matrix converter is restricted to a maximum value of 0.866, which is not suitable for applications whose source voltages are lower than the load voltages. The proposed RMC topology can step up the voltage without any additional components in the conventional circuit. Its control method is different from traditional matrix converter’s one, thus this paper proposes control schemes of RMC by means of controlling both the generator and motor side currents with properly designed control loop. The converter can have sinusoidal input/output current waveforms in steady state condition as well as a boosted voltage. In this paper, a hardware system with an RMC for a PMSM drive system is described. The performance of the system was investigated through experiments

Self-Shielding Magnetized vs. Shaped Parallel-Magnetized PM Brushless AC Motors

  • Pang Y.;Zhu Z. Q.;Howe D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.13-19
    • /
    • 2005
  • The performance of two designs of permanent magnet brushless motor, by having self-shielding magnetized magnets or sinusoidally shaped parallel-magnetized magnets with essentially sinusoidal airgap flux distributions, are compared. It is shown that the parallel-magnetized motor with shaped sintered NdFeB magnets can result in a higher airgap flux density and torque density than that of a self-shielding magnetized motor equipped with an anisotropic injection moulded NdFeB ring magnet.