• Title/Summary/Keyword: Peripheral Blood Mononuclear Cell Migration

Search Result 5, Processing Time 0.017 seconds

Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition

  • Im, Yun-Sun;Ryu, Yun-Kyoung;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • Cell migration plays a role in many physiological and pathological processes. Reactive oxygen species (ROS) produced in mammalian cells influence intracellular signaling processes which in turn regulate various biological activities. Here, we investigated whether melanoma cell migration could be controlled by ROS production under normoxia condition. Cell migration was measured by wound healing assay after scratching confluent monolayer of B16F10 mouse melanoma cells. Cell migration was enhanced over 12 h after scratching cells. In addition, we found that ROS production was increased by scratching cells. ERK phosphorylation was also increased by scratching cells but it was decreased by the treatment with ROS scavengers, N-acetylcysteine (NAC). Tumor cell migration was inhibited by the treatment with PD98059, ERK inhibitor, NAC or DPI, well-known ROS scavengers. Tumor cell growth as judged by succinate dehydrogenase activity was inhibited by NAC treatment. When mice were intraperitoneally administered with NAC, the intracellular ROS production was reduced in peripheral blood mononuclear cells. In addition, B16F10 tumor growth was significantly inhibited by in vivo treatment with NAC. Collectively, these findings suggest that tumor cell migration and growth could be controlled by ROS production and its downstream signaling pathways, in vitro and in vivo.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Immunoenhancing Effects of Conjugated Linoleic Acid on Chemotactic Activity of Porcine Peripheral Blood Polymorphonuclear Cells (돼지 말초혈액 다형핵 백혈구의 유주성에 있어서 conjugated linoleic acid의 면역증강효과)

  • Kim, Ju-hyang;Chung, Chung-soo;Lee, Chul-young;Yang, Mhan-pyo
    • Journal of Veterinary Clinics
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Immunoenhancing effects of conjugated linoleic acid (CLA) isomers (l0t-l2c CLA, 9c-11t CLA, CLA mixture, 9c-11c CLA and 9t-11t CLA) on chemotactic activity of porcine peripheral blood polymorphonuclear cells (PMN) were examined. The chemotactic activity of PMN was evaluated by a modified Boyden chamber assay. CLA isomers at higher concentration of 50 to 200$\mu$M exhibited a low viability of cells by trypan blue exclusion. CLA isomers were used at concentration of 20uM showing no cytotoxic effect and high cell viability. CLA isomers themselves were not active or slight chemotactic for PMN. But culture supernatant from mononuclear cells (MNC) treated with 10t-12c CLA, 9c-11t CLA and CLA mixture except for 9c-11c. CLA and 9t-11t CLA enhanced remarkably chemotactic activity or porcine PMN PMN migration by culture supernatant from MNC treated with CLA mixture was found to be true chemotaxis by checkboard assay. This migration was also induced by porcine recombinant interleukin (rIL)-8. PMN chemotaxis caused both culture supernatant from MNC treated with CLA mixture and porcine rIL-8 was inhibited in a dose-dependent manner by addition of anti-porcine IL-8 polyclonal antibody. Therefore, these results strongly suggested that CLA (10t-12c CLA, 9c-11t CLA and CLA mixture) could stimulate porcine MNC to release and IL-8 like chemotactic activity.

In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines

  • Hye-Gyu Lee;Ga-Hyun Lim;Ju-Hyun An;Su-Min Park;Kyoung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.1.1-1.15
    • /
    • 2024
  • Background: Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). Objectives: This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. Methods: We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. Results: When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. Conclusion: In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.

Supplementation of Indigenous Green Microalga (Parachlorella sp.) to Pre-starter Diet for Broiler Chickens (초기 육계 사료내 토착미세조류(Parachlorella sp.) 첨가에 따른 성장 및 면역반응 변화)

  • An, Su Hyun;Joo, Sang Seok;Lee, Hyo Gun;Kim, Z-Hun;Lee, Chang Soo;Kim, Myunghoo;Kong, Changsu
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • The present study determined the effect of dietary cultivated microalgae (Parachlorella sp.) on the growth and immune responses of pre-starter broilers. A total of 320 one-day-old birds (Ross 308) were allocated to 4 treatments with 8 blocks in a randomized complete block design. The four experimental diets consisted of a corn-soybean meal-based control diet, and three diets contained 0.5%, 1.0%, and 1.5% microalgae powder at the expense of cornstarch in the control diet. After feeding the experimental diets for 7 days, the body weight and feed intake of all birds were measured, and 8 birds were randomly selected from each treatment. Peripheral blood mononuclear cells (PBMCs) and serum were harvested for immune profile assessment, including cytokines and cell migration receptors. No differences in growth performance were observed among the treatments. The birds that were fed diets containing graded levels of microalga showed a linear increase in the mRNA expression of cytokine genes in PBMCs, including that of IL2, IL1β, and IL18 (P<0.05). With respect to the chemokine receptor genes in PBMCs, mRNA expression of CCR2, CCR9, and ITGA4 changed quadratically (P<0.05), but that of CCR7 increased linearly (P<0.01). Cytokine protein secretion in blood, including that of IL-1β and IL-6, increased linearly (P<0.01) with an increase in the microalgal content. Overall, the present results show that the indigenous microalgae powder used in this study could stimulate immunity with no detrimental effects on the growth performance of pre-starter broiler chickens.