• Title/Summary/Keyword: Periodontal tissue regeneration

Search Result 378, Processing Time 0.122 seconds

The SEM Observation of The Various Root Treatment Effect On Furcation Area (치근 이개부 병소의 치근처방법에 따른 주사현미경적 연구)

  • Park, Hyun-Su;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.205-215
    • /
    • 1997
  • In periodontal regeneration treatment, access to the frucation area is very difficult. Thus complete removal of plaque, calculus and endotoxin is somewhat impossible. In this study, teeth that were extracted due to periodontal disease were used. The furcation area was treated with periodontal curette, ultrasonic scaler, roto bur and they observed using SEM. The result was follows 1. The group treatment with curette showed remaining plaque, the cementum existed in most of the surface and partial dentinal tubule orifice could be seen. 2. The group treatment with ultrasonic scaler showed less removalof plaque compared to curette and irregular surface could be seen. 3. The group treatment with roto bur showed cleaner surface and many dentinal tubule orifice could be seen compared to the curette and ultrasonic scaler groups. Thus when suing treatments such as bone grafting or guided tissue regeneration, it is considered that the furcation area should be treatment with Roto bur.

  • PDF

The Effect of PDGF-Loaded Biodegradable Membrane on Early Healing Stage in Guided Tissue Regeneration (흡수성 차폐막의 치주조직 재생에 혈소판유래 성장인자가 미치는 영향)

  • Rhyu, In-Chul;Bae, Kyoo-Hyun;Seol, Yang-Jo;Ku, Young;Lee, Seung-Jin;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.507-519
    • /
    • 1999
  • The ultimate objective of periodontal treatment is to stop disease progression and to regenerate destroyed periodontal tissues and thereby regain normal function. Growth factors are naturally found polypetides which stimulate many cellular activities pertaining to wound healing by acting as signal molecule in controlling cell movement, proliferation, and matrix production. Platelet derived growth factor (PDGF) is 28,000-35,000 Da molecular weight dimeric protein with 2 long positively charged polypeptide chains connected by sulfide bonds. The purpose of this study is to evaluate histologically the initial guided tissue regeneration in a periodontal defect f a beagle dog treated with a biodegradable membrane formed with polylactic acid (poly-L-lactic acid) and polyglycolic acid loaded with 200ng/$cm^2$ platelet derived growth factor. 2 beagle dogs were used in he experiment. $5mm{\times}6mm$ alveolar bone defect was formed in upper and lower canines and third premolars and a reference notch was placed. PDGF-BB non-containing membrane was used as control. Each defect was randomly assigned to the test roup or the control group. The dogs were sacrificed 3 weeks after membrane placement. Toluidine blue and multiple staining was done for histological analysis. In the 3 week specimen in the control group, no new one formation could be seen. Small amount f bone resorption below the notch could be seen. In the notch, loose connective tissue with infiltration of inflammatory cells could be seen. Also thin discontinuous new cementum could be seen and the membrane still retained its structure. Where PDGF-BB containing membrane was used, new bone formation could be seen in the notch at weeks and also continuous thin cementum could be seen. PDL cells were observed between new bone and new cementum and some were attached to bone and cementum. These results suggest that new bone and cementum formation seen when PDGF-BB loaded membrane was used was due to inhibition of downgrowth of epithelial cells and also due to continuous release of the growth factor. Further study on the resorption characteristics of the membrane nd the release characteristics of the PDGF-BB is necessary. Also, development of a membrane easier to use clinically is necessary.

  • PDF

THE EFFECTS OF THE PLATELET-DERIVED GROWTH FACTOR-BB ON THE PERIODONTAL TISSUE REGENERATION OF THE FURCATION INVOLVEMENT OF DOGS (혈소판유래성장인자-BB가 성견 치근이개부병변의 조직재생에 미치는 효과)

  • Cho, Moo-Hyun;Park, Kwang-Beom;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.535-563
    • /
    • 1993
  • New techniques for regenerating the destructed periodontal tissue have been studied for many years. Current acceptable methods of promoting periodontal regeneration alre basis of removal of diseased soft tissue, root treatment, guided tissue regeneration, graft materials, biological mediators. Platelet-derived growth factor (PDGF) is one of polypeptide growth factor. PDGF have been reported as a biological mediator which regulate activities of wound healing progress including cell proliferation, migration, and metabolism. The purposes of this study is to evaluate the possibility of using the PDGF as a regeneration promoting agent for furcation involvement defect. Eight adult mongrel dogs were used in this experiment. The dogs were anesthetized with Pentobarbital Sodium (25-30 mg/kg of body weight, Tokyo chemical Co., Japan) and conventional periodontal prophylaxis were performed with ultrasonic scaler. With intrasulcular and crestal incision, mucoperiosteal flap was elevated. Following decortication with 1/2 high speed round bur, degree III furcation defect was made on mandibular second(P2) and fourth(P4) premolar. For the basic treatment of root surface, fully saturated citric acid was applied on the exposed root surface for 3 minutes. On the right P4 20ug of human recombinant PDGF-BB dissolved in acetic acid was applied with polypropylene autopipette. On the left P2 and right P2 PDGF-BB was applied after insertion of ${\beta}-Tricalcium$ phosphate(TCP) and collagen (Collatape) respectively. Left mandibular P4 was used as control. Systemic antibiotics (Penicillin-G benzathine and penicillin-G procaine, 1 ml per 10-25 1bs body weight) were administrated intramuscular for 2 weeks after surgery. Irrigation with 0.1% Chlorhexidine Gluconate around operated sites was performed during the whole experimental period except one day immediate after surgery. Soft diets were fed through the whole experiment period. After 2, 4, 8, 12 weeks, the animals were sacrificed by perfusion technique. Tissue block was excised including the tooth and prepared for light microscope with H-E staining. At 2 weeks after surgery, therer were rapid osteogenesis phenomenon on the defected area of the PDGF only treated group and early trabeculation pattern was made with new osteoid tissue produced by activated osteoblast. Bone formation was almost completed to the fornix of furcation by 8 weeks after surgery. New cementum fromation was observed from 2 weeks after surgery, and the thickness was increased until 8 weeks with typical Sharpey’s fibers reembedded into new bone and cementum. In both PDGF-BB with TCP group and PDGF-BB with Collagen group, regeneration process including new bone and new cementum formation and the group especially in the early weeks. It might be thought that the migration of actively proliferating cells was prohibited by the graft materials. In conclusion, platelet-derived growth factor can promote rapid osteogenesis during early stage of periodontal tissue regeneration.

  • PDF

The effect of chitosan/ACS on bone regeneration in rat calvarial defects (백서두개골 결손부에서 키토산/흡수성 콜라겐 전달체의 골재생)

  • Kim, Soo-Kyoung;Suk, Hun-Joo;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.457-474
    • /
    • 2003
  • The ultimate objective of periodontal treatment is to get rid of an on-going periodontal disease and further regenerate the supporting tissue, which is already destroyed, functionally. Currently, the bone grafting operation using various kinds of bone grafting materials and the operation for induced regeneration of periodontal tissue using the blocking membrane are performed for regeneration of the destroyed periodontal tissue. However, there are respective limitations Galenical preparations, which are used for regeneration of periodontal of tissue, has less risk of rejective reaction or toxicity that may be incidental to degradation and their effect is sustainable. Thus, in case they are applicable to a clinic, they can he used economically. Chitosan has such compatibility, biological actions including antibacterial activity, acceleration of wound treatment, etc., and excellent mechanical characteristics, which has recently aroused more interest in it. Also, it has been reported that it promotes osteogenesis directly or indirectly by functioning as a matrix to promote migration and differentiation of a specific precussor cell (for example, osteoblast) and further inhibiting the function of such a cell as fibroblast to prevent osteogenesis. In this study, the pure chitosan solution, which was obtained by purifying chitosan, was used. However, since this chitosan is of a liquiform, it is difficult to sustain it in a defective region. It is, therefore, essential to use a carrier for delivering chitosan to, and sustaining it gradually in the defective region. In the calvarial defect model of the Sprague-Dawley rat, it is relatively easy to maintain a space. Therefore, in this study, the chitosan solution with which ACS was wetted was grafted onto the defective region, For an experimental model, a calvarial defect of rat m s selected, and a critical size of the defective region was a circular defect with a diameter of 8 mm. A group in which no treatment was conducted for the calvarial defect was set as a negative control group. Another group in which treatment was conducted with ACS only was set as a positive control group (ACS group). And another group in which treatment was conducted was conducted with by grafting the pure chitosan solution onto the defective region through ACS which was wetted with the chitosan solution was set an experimental group (Chitosan/ACS group). Chitosan was applied to the Sprague-Dawley rat's calvarial bone by applying ACS which was wetted with the chitosan solution, and each Sprague-Dawley rat was sacrificed respectively 2 weeks and 8 weeks after the operation for such application. Then, the treatment results were compared and observed histologically and his tometrically. Thereby, the following conclusions were obtained. 1. In the experimental group, a pattern was shown that from 2 weeks after the operation, vascular proliferation proceeded and osteogenesis proceeded through osteoblast infiltration, and at 8 week after the operation, ACS was almost absorbed, the amount of osteogensis was increased and many osteoid tissue layers were observed. 2. At 2 weeks after the operation, each amount of osteogenesis appeared to be 8.70.8 %, 13.62.3 % and 4.80.7 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be higher in the Experimental group and the positive control group than in the negative control group, but there was no significant difference statistically (p<0.01). 3. At 8 weeks after the operation, each amount of osteogenesis appeared to be 62.26.1%, 17.42.5 % and 8.21.4 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be substantially higher in the experimental group than in the positive control group and the negative control group, and there was a significant difference statistically (p<0.01). As a result of conducting the experiment, when ACS was used as a carrier for chitosan, chitosan showed effective osteogenesis in the perforated defective region of the Sprague-Dawley rat's calvarial bone.

The Bone Regenerative Effects of Chitosan on the Calvarial Critical Size Defectin Sprague Dawley Rats (백서 두개골 결손부에서 키토산의 골조직 재생 유도 효과)

  • Jung, Ui-Won;Suh, Jong-Jin;Choi, Seong-Ho;Choi, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.851-870
    • /
    • 2000
  • The major goals of periodontal therapy is the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. There have been increasing interest on the chitosan made by chitin. Chitin is second only to cellulose as the most abundant natural biopolymer. It is a structural component of the exoskeleton of invertebrates(e.g., shrimp, crabs, lobsters), of the cell wall of fungi, and of the cuticle of insects. Chitosan is a derivative of chitin made by deacetylation of side chains. Many experiments using chitosan in various animal models have proven its beneficial effects. The aim of this study is to evaluate the osteogenesis of chitosan on the calvarial critical size defect in Sprague Dawley rats. An 8 mm surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into two groups: Untreated control group versus experimental group with 50mg of soluble chitosan gel. The animals were sacrificed at 2, 4 and 8 weeks after surgical procedure. The specimens were examined by histologic, histomorphometric and radiodensitometric analyses. The results are as follows: 1. The length of newly formed bone in the defects was $102.91{\pm}25.46{\mu}m$, $219.46{\pm}97.81{\mu}m$ at the 2 weeks, $130.95{\pm}39.24{\mu}m$, $212.39{\pm}89.22{\mu}m$ at the 4 weeks, $181.53{\pm}76.35{\mu}m$ and $257.12{\pm}51.22{\mu}m$ at the 8 weeks in the control group and experimental group respectively. At all periods, the means of experimental group was greater than those of control group. But, there was no statistically significant difference between the two groups. 2. The area of newly formed bone in the defects was $2962.06{\pm}1284.48{\mu}m^2$, $5194.88{\pm}1247.88{\mu}m^2$ at the 2 weeks, $5103.25{\pm}1375.88{\mu}m^2$, $7751.43{\pm}2228.20{\mu}m^2$ at the 4 weeks and $8046.20{\pm}818.99{\mu}m^2$, $15578.57{\pm}5606.55{\mu}m^2$ at the 8 weeks in the control group and experimental group respectively. At all periods, the means of experimental group was greater than those of control group. The experimental group showed statistically significant difference to the control group at the 2 and 8 weeks. 3. The density of newly formed bone in the defects was $14.26{\pm}6.33%$, $27.91{\pm}6.65%$ at the 2 weeks, $20.06{\pm}9.07%$, $27.86{\pm}8.20%$ at the 4 weeks and $22.99{\pm}3.76%$, $32.17{\pm}6.38%$ at the 8 weeks in the control group and experimental group respectively. At all periods, the means of experimental group was greater than those of control group. The experimental group showed statistically significant difference to the control group at the 2 and 8 weeks. These results suggest that the use of chitosan on the calvarial defects in rats has significant effect on the regeneration of bone tissue in itself

  • PDF

Treatment of the cemental tear

  • Park, Ye-Sol;Lee, Jae-Hong;Jeong, Seong-Nyum
    • Oral Biology Research
    • /
    • v.42 no.4
    • /
    • pp.248-253
    • /
    • 2018
  • Cemental tears are uncommon form of root fracture that can lead to rapid localized periodontal attachment loss. Studies have described periodontal breakdown as being associated with the separation of the cementum from the underlying tooth structure. The aim of this case report is to assess the outcome of treatment of cemental tear with several surgical treatment regimens. Three patients with cemental tear were treated with different surgical method. In all three cases, the cemental tear occurred on maxillary right central incisors. In each case, the root fragment were removed, the localized defect was treated using different surgical methods including guided tissue regeneration and bone graft followed by scaling and root planting. In all three cases, symptoms subsided after the treatment and clinical attachment level was improved up to 2 mm at 3 month after surgery. Both conventional and regenerative periodontal surgery could achieve successful outcomes.

The Effect of Enamel Matrix Derivative on the Healing of Autotransplanted Periodontally Diseased Teeth (법랑기질 유도체가 치주질환에 이환된 자가이식 치아의 치유에 미치는 영향)

  • Kim, Ji-Hwan;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.193-209
    • /
    • 2001
  • The prognosis of transplanted teeth is strongly related with periodontal healing. Several experimental studies showed that the application of enamel matrix derivatives on periodontitis-affected root surfaces resulted in periodontal regeneration. The purpose of this study was to determine the effect of enamel matrix derivatives on periodontitis-affected root surfaces prior to transplantation in dogs. Class III Furcation defects were surgically created on the left second, the third and the fourth premolar in the mandibles of nine mongrel dogs and experimental periodontitis was induced by placing small cotton pellets into defects for 3 weeks. Periodontitis-affected roots were treated by scaling and planing and the coronal portions were removed. Each root was extracted and implanted into recipient bed prepared in the contralateral premolar area. The transplanted roots were grouped according to the treatment modalities; Group I- roots treated with saline only, Group II- roots conditioned by neutral EDTA, and Group III- roots conditioned by neutral EDTA and enamel matrix derivatives ($EMDOGAIN^{(R)}$, BIORA Co., Sweden). The animals were sacrificed at 1 week, 3 weeks, and 10 weeks after transplantation and decalcified specimens were prepared for histologic examination. In Group I, healing was most frequently characterized by root resorption and ankylosis. In Group II, with root resorption and ankylosis in a few specimens, connective tissue attachment was partly seen on denuded root surface, but no cementum formation was seen. In Group III, there was regeneration by new cementum and periodontal ligament on denuded root surface, although slight root resorption and ankylosis were found in a few specimens. This result suggests that enamel matrix derivatives treatment on periodontitis-aggected root surface could reduce the frequency of root resorption and ankylosis and contribute to periodontal regeneration, and might be useful for autologous transplantation.

  • PDF

Effects of pre-applied orthodontic force on the regeneration of periodontal tissues in tooth replantation

  • Park, Won-Young;Kim, Min Soo;Kim, Min-Seok;Oh, Min-Hee;Lee, Su-Young;Kim, Sun-Hun;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.49 no.5
    • /
    • pp.299-309
    • /
    • 2019
  • Objective: This study aimed to investigate the effect of pre-applied orthodontic force on the regeneration of periodontal ligament (PDL) tissues and the underlying mechanisms in tooth replantation. Methods: Orthodontic force (50 cN) was applied to the left maxillary first molars of 7-week-old male Sprague-Dawley rats (n = 32); the right maxillary first molars were left untreated to serve as the control group. After 7 days, the first molars on both sides were fully luxated and were immediately replanted in their original sockets. To verify the effects of the pre-applied orthodontic force, we assessed gene expression by using microarray analysis and real-time reverse transcription polymerase chain reaction (RT-PCR), cell proliferation by using proliferating cell nuclear antigen (PCNA) immunofluorescence staining, and morphological changes by using histological analysis. Results: Application of orthodontic force for 7 days led to the proliferation of PDL tissues, as verified on microarray analysis and PCNA staining. Histological analysis after replantation revealed less root resorption, a better arrangement of PDL fibers, and earlier regeneration of periodontal tissues in the experimental group than in the control group. For the key genes involved in periodontal tissue remodeling, including CXCL2, CCL4, CCL7, MMP3, PCNA, OPG, and RUNX2, quantitative RT-PCR confirmed that messenger RNA levels were higher at 1 or 2 weeks in the experimental group. Conclusions: These results suggest that the application of orthodontic force prior to tooth replantation enhanced the proliferation and activities of PDL cells and may lead to higher success rates with fewer complications.

EFFECT OF COMPOSITE GRAFT OF CALCIUM CARBONATE AND CALCIUM SULFATE ON THE PERIODONTAL REGENERATION OF 3-WALL INTRABONY DEFECTS OF ADULT DOGS (성견의 3면 골내낭에 calcium carbonate와 calcium sulfate의 혼합이식이 치주조직 치유에 미치는 영향)

  • Choi, Mi-Ryung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.3
    • /
    • pp.633-648
    • /
    • 1994
  • Synthetic bone graft materials have been used for the regeneration of periodontal tissue lost due to periodontal disease, but the limitations of these materials had prompted the use of composite grafts. Among those, a composite graft of calcium carbonate(CC) and calcium sulfate(CS) is one of those materials that has not been studied extensively. CC, which is extracted from a natural coral, is known to possess osteoconductive property. SC can play an adjunctive role in the regeneration of bone tissue, and has shown good resorbability and biocompatibility. This study was conducted in order to investigate the effects of CC and CS composite graft to the regeneration of bone in the intrabony defects of dogs. 3-wall intrabony defects ub size of $4mm{\times}4mm{\times}4mm$ were created in the alveolar bone in the premolar areas. Then those defects that were treated with root planning only were designated as control, while the experimental group 1 and 2 each received the CC and CS composite grafts in the ratio of 8 : 2 and 5 : 5 the animals were sacrificed after 8weeks and the specimens were histologically analyzed. The results were as follows ; 1. No inflammation or foreign body reaction were observed in all subjects. CS has not been seen due to complete resorption, and resorption pattern of CC was observed. 2. Significant differences(p<0.05) in new cementum formation were observed between control($1.42{\pm}0.64mm$) and experimental groups(group 1 ; $2.53{\pm}0.94mm$, group 2 ; $2.23{\pm}0.96mm$) but the difference between the two experimental groups was not significant. 3. Significant differences(p<0.01) in new bone formation were observed between control($0.59{\pm}0.55mm$) and experimental groups(group 1 ; $2.27{\pm}0.61mm$, group 2 ; $2.05{\pm}0.56mm$) but the difference between the two experimental groups was not significant. 4. The extent of apical epithelial migration has shown no significant difference between control($1.18{\pm}1.24mm$) and experimental groups(group 1 ; $0.51{\pm}0.54mm$, group 2 ; $0.73{\pm}0.70mm$). 5. The extent of bone formation was generally limited to the extent of cementum formation for all groups, and significant correlation was found in the amount of bone formation and cementum formation in experimental group 1.(Co.=0.86, p<0.01) These results suggest that the composite graft of CC and CS is biocomplatible and effective in the new bone and new cementum formations. In the case of 3-wall intrabony defects of dogs, the composite ratio of 8 : 2 and 5 : 5 had shown no significant differences in the healing.

  • PDF

Effect Of Bioceramic Grafts With And Without eptfe Membrane In Periodontal Osseous Defects In Dogs (생체요업재료와 차폐막의 복합사용후 골연하 결손부의 재생효과)

  • Lee, In-Kyung;Lee, Ki-Young;Han, Soo-Boo;Ko, Jae-Sung;Cho, Jeong-Sik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.47-67
    • /
    • 1996
  • The purpose of this study was to observe the effect of $Biocoral^R$ graft and bioglass 45S5 graft in combination with ePTFE membrane in periodontal osseous defects for new bone formation. Nine healthy dogs were used. Under general anesthesia, 3-wall defects were created on the mesial and distal surfaces of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars. To induce periodontitis, a silicone rubber, $Provil^R$ light body, was injected under pressure into the defects. Ninety days later, $Provil^R$was removed and followed by thorough root planing. The followings were then applied in the mesial and distal defects of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars by random selections : 1) ePTFE membrane only application, 2) $Biocoral^R$ graft, 3) $Biocoral^R$ graft and ePTFE membrane application, 4)Bioglass 45S5 graft, 5) Bioglass 45S5 graft and ePTFE membrane application. The membranes were removed 1 month later. The dogs were sacrified at 1, 2 and 3 months following the graft, and block sections were made, demineralized, embedded, stained and examined by light microscope and transmission electron microscope. On the sections from teeth treated with ePTFE membrane only, the defect demonstrated extensive connnective tissue and alveolar bone regeneration. The $Biocoral^R$ graft group demonstrated extensive bone regeneration compared with ePTFE membrane only group. In the $Biocoral^R$ graft plus ePTFE membrane group, regeneration of new alveolus and crest occurred within the defect. As the experimental period lengthened, bone regeneration was increased and bone bridge was formed among the graft particles. The but bioglass 45S5 graft group demonstrated extensive bone regeneration but the amount of new bone was less than that of the $Biocoral^R$ graft group. For the bioglass 45S5 graft plus ePTFE membrane group, the amount of new bone was also increased. As the experimental period lengthened, bone regeneration was increased. Multinucleated giant cells, fibroblasts and macrophages were observed. As the bone formation was increased, the number of such cells was decreased. In conclusion, the $Biocoral^R$ was found better than the bioglass 45S5 for new bone formation, and the use of ePTFE membrane alone or with $Biocoral^R$/bioglass 45S5 can be supported as potential methods of promoting bone formation.

  • PDF