• 제목/요약/키워드: Periodic flow oscillation

검색결과 41건 처리시간 0.035초

선회가 있는 180°원형 곡관의 유동소음에 대한 실험적 연구 (An Experimental Study on Flow Noise with Swirl in a 180 Degree Circular Tube)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.903-911
    • /
    • 2009
  • During the past three or four decades, the characteristics of turbulent swirling flow have been studied extensively because of their scientific and academic importance. This research deal with the periodic flow oscillation with and without swirling flow in a 180 degree circular tube using hot wire anemometry, microphone and accelerometer. The frequency regions are observed through the structured oscillation from spectrum. This work carried out to measure the sound level by using hot wire anemometry, microphone and accelerometer for each Reynolds number, $6{\times}10^4$, $8{\times}10^4$ and $1{\times}10^5$ respectively at the entry of the test tube with and without swirl flow.

준밀폐형 2상자연순환 회로 내에서의 유동 진동에 관한 실험적 연구 (Experimental Investigation of Flow Oscillations in a Semi-closed Two-phase Natural Circulation Loop)

  • 김종문;이상용
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1763-1773
    • /
    • 1998
  • In the present experimental study, the flow behavior in a semi-closed two-phase natural circulation loop was examined. Water was used as the working fluid. Heat flux, heater-inlet subcooling, and flow restrictions at the heater-inlet and at the expansion-tank-line were taken as the controlling parameters Six circulation modes were identified by changing heat flux and inlet subcooling conditions ; single-phase continuous circulation, periodic circulation (A), two-phase continuous circulation, and periodic circulations (B), (C), and (D). Among these, the single-phase and two-phase continuous-circulation modes exhibit no significant oscillations and are considered to be stable. Periodic circulation (A) is characterized by the large amplitude two-phase f10w oscillations with the temporal single-phase circulation between them, while periodic circulation (B) featured by the flow oscillations with continuous boiling inside the heater section. Periodic circulation (C) appears to be the manometric oscillation with continuous boiling. Periodic circulation (D) has the longer period than periodic circulation (B) and a substantial amount of liquid flow back and forth through the expansion-tank-line periodically ; this mode is considered the pressure drop oscillation. Parametric study shows that the increases of the inlet- and expansion-tank-line- restrictions and the decrease of inlet subcooling broaden the range of the stable two-phase(continuous circulation) mode.

Dynamic Characteristics of an Unsteady Flow Through a Vortex Tube

  • Kim, Chang-Soo;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2209-2217
    • /
    • 2006
  • Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.

180도 원형 곡관에서 유동소음에 대한 실험적 연구 (An Experimental Study on flow Noise in a 180 Degree Circular Tube)

  • 장태현;이상배
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.29-34
    • /
    • 2009
  • During the past three or four decades, the characteristics of turbulent flow have been studied extensively because of their scientific and academic importance. This research deals with the periodic flow oscillation without swirling flow in a 180 degree circular tube using hot wire anemometry, microphone and accelerometer. The frequency regions are observed through the structured oscillation from spectrum. This work carried out to measure the sound level for each Reynolds number, $6{\times}10^4$, $8{\times}10^4$ and $1{\times}10^5$ respectively at the test tube without swirl flow.

날개 명음소음에 관한 이론 및 실험 연구 (Theoretical and Experimental Study on Airfoil Singing)

  • 안병권;김종현;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.476-476
    • /
    • 2009
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appear, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

  • PDF

날개 명음소음에 관한 이론 및 실험 연구 (Theoretical and Experimental Study on Airfoil Singing)

  • 안병권;이종현;이욱;최종수
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.115-121
    • /
    • 2010
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

진동하는 원주주위 유동의 직접수치해석 (Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder)

  • 강신정;타나하시 마모루;미야우치 토시오;이영호
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

진동하는 원주주위 유동의 직접수치해석 (Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder)

  • 강신정;;;남청도;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Numerical investigation on vortex-induced vibration response characteristics for flexible risers under sheared-oscillatory flows

  • Xue, Hongxiang;Yuan, Yuchao;Tang, Wenyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.923-938
    • /
    • 2019
  • Surge motion of top-end platform induced by periodic wave makes marine flexible riser encounter equivalent sheared-oscillatory flow, under which the Vortex-induced Vibration (VIV) response will be more complicated than pure sheared flow or oscillatory flow cases. Based on a time domain force-decomposition model, the VIV response characteristics under sheared-oscillatory flows are investigated numerically in this paper. Firstly, the adopted numerical model is validated well against laboratory experiments under sheared flow and oscillatory flow. Then, 20 sheared-oscillatory flow cases with different oscillation periods and top maximum current velocities are designed and simulated. Under long and short oscillation period cases, the structural response presents several similar features owing to the instantaneous sheared flow profile at each moment, but it also has some different patterns because of the differently varying flow field. Finally, the effects and essential mechanism of oscillation period and top maximum current velocity on VIV response are discussed systematically.

바탕회전하에 회전요동하는 직사각형용기 내의 유동에 관한 연구 (Study on Fluid Flows in a Rectangular Container Subjected to a Background Rotation and a Rotational Oscillation)

  • 박재현;서용권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.215-219
    • /
    • 2002
  • In this study, we show the numerical and the experimental results for fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the numerical computation, we used a parallel computer system of PC-cluster type. Attention is given to dependence of the flow patterns on the parameter change. It shows that the flow becomes in a periodic state at low Reynolds numbers and undergoes a transition to a chaotic motion at high Reynolds numbers. It also shows that the fluid motion tends to be depth-independent at ${\epsilon}$ up to 0.3 for Re lower than 5235.

  • PDF