• Title/Summary/Keyword: Periodic External Force

Search Result 33, Processing Time 0.027 seconds

Analysis of Nonlinear Behavior in Idea of Physical Exercise with Unification of Mind and Body (심신일여 체육 사상에서의 비선형 거동 해석)

  • Kim, Myung-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.645-652
    • /
    • 2016
  • The basic equation of body and mind that can be represented as body and mind based on love model of Romeo and Juliet is presented in this paper. In order verify validity for physical idea of unification for body and mind when the external force is applied in the basic equation. We display the time series and phase portrait for nonlinear behavior, and this paper confirms the point of difference between body-mind neutral monism and body-mind dualism.

DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW (전단유동에서 자성사슬의 거동에 대한 직접수치해석)

  • Kang, T.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

Oscillatory behavior of microglial cells (미세아교세포의 진동 거동의 연구)

  • Park, Eunyoung;Cho, Youngbin;Ko, Ung Hyun;Park, Jin-Sung;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2021
  • Cells regulate their shapes and motility by sensing the cues from the internal and external microenvironment. Under different circumstances, microglia, the brain resident immune cells, undergo dynamic phenotypic changes, one of which is a remarkable periodic oscillatory migration in vitro. However, very little is known about the kinematic and dynamic perspectives of this oscillatory behavior. In this study, we tracked the changes in cell morphology and nuclear displacement, and visualized the forces using traction force microscopy (TFM). By correlation analyses, we confirmed that the lamellipodia formation preceded the nuclear translocation. Moreover, traction, developed following lamellipodia formation, was found to be localized and fluctuated at two ends of the oscillating cells. Taken together, our results imply that oscillatory microglial cells feature a viscoelastic migration, which will contribute to the field of cell mechanics.

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

Flow Around a Pipeline and Its Stability in Subsea Trench

  • Lee, Seungbae;Jang, Sung-Wook;Chul H. Jo;Hong, Sung-Guen
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.500-509
    • /
    • 2001
  • Offshore subsea pipelines must be stable against external loadings, which are mostly due to waves and currents. To determine the stability of a subsea pipeline on the seabed, the Morrison equation has been applied with prediction of inertia and drag forces. When the pipeline is placed in a trench, the force acting on it is reduced considerably. Therefore, to consider the stability of a pipeline in a trench, one must employ reduction factors. To investigate the stability of various trenches, we numerically simulated flows over various trenches and compared them with experimental data from PIV (Particle Image Velocimetry) measurements. The present results were produced ar Reynolds numbers ranging from 6$\times$10$^3$to 3$\times$10(sub)5 based on the diameter of the cylinder. Quasi-periodic flow patterns computed by large-eddy simulation were compared with experimental data in terms of mean flow characteristics fro typical trench configurations (W/H=1 and H/D=3, 4). The stability for various trench conditions was addressed in terms of mean amplitudes of oscillating lift and drag, and the reduction factor for each case was suggested for pipeline design.

  • PDF

A study on walking algorithm of quadruped robot used stroke control method in the irregular terrain (비평탄 지형에서 스토로크 제어법을 이용한 4족 로봇의 보행 알고리즘에 관한 연구)

  • Ahn, Young-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.52-59
    • /
    • 2006
  • Walking robot is able to move in regular or irregular terrain. It can walk that change adaptive algorithms according to the terrain. Existing papers about adaptive gaits of blind robot are based on intelligent foothold selection. However, this paper proposes a algerian that is based on the variations of stroke and period to adapt the irregular terrain. If thus adaptive algorithms is used, robot can maintain periodic gait walking and constant speed using only force sensor even in the irregular terrain without external sophisticated sensor. In this paper Quadruped robot with 2 DOF in each leg, is walk experiment with the wave gait in regular and irregular terrain. So the adaptive algorithm is proved useful through walk experiment.

Development of Apparatus for Measuring Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (조류 흐름을 고려한 해양지반 수리저항성능 실험기 개발)

  • Kang, Kyoung-O;Jeong, Hyun-Chel;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1366-1369
    • /
    • 2010
  • Along with the increasing need of sea development, the hydraulic stability of seabed structure on a soft seafloor ground is becoming an issue in the course of seaside development recently. However, the movement and hydraulic resistance or hydraulic stability of seafloor ground are mutually coupled with various phenomena, and there has been no clear proof for the issue, which makes it difficult to forecast. Furthermore, most researches are focused on hydraulic variables and the conditions of marine external force, while there have been few researches into the assessment in consideration of the type of a seafloor ground and the geotechnical characteristics. In addition, according to the periodic change of the flow direction, possible changes in hydraulic resistance performance of the seafloor deserves all the recognition. But there is no way to measure the hydraulic unstability of the sea ground due to tidal flow quantitatively. In this study, conventional hydraulic resistance measurement apparatus was improved to consider direction change of the current flow. Various artificial clayey soil specimens were made from Kaolinite and Jumunjin standard sand and hydraulic resistance tests were performed by changing the flow direction to validate the effect of the direction change on the scour of the seafloor.

  • PDF

A Study of the Power Loss in the Multimode Optical Fiber Microbended into Arbitrary Shape (임의 모형의 Microbending에 의한 다중모드 광섬유의 광손실에 관한 연구)

  • 이경목;조재철;최상삼
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.696-700
    • /
    • 1987
  • Guide modes in a graded index multinmode optical fiber are turned into clad modes when the optical fiber was bended into a perpendicular direction to its optical axes by microbending forces, which causes the loss of the guiding optical power. The theories reported on this microbending power loss can be applied to calculation of the transmission power loss only when the beding period equals to the mode coupling length. In this paper, we obtained the general expression of the optical power transmission loss in a graded index multimode fiber bended periodically. This can be applied to the calculation of the power loss of the periodically microbended fiber with an arbitrary bending shape and period. Also, by using the beam theory in mechanics, we could derive the expression of the displacement of the optical fiber caused by the external force which bends the fiber into a periodic trapezoidal shape. Experiments were carried out to determine the dependence of the power loss on the period of the microbending forces. Experimnetal results were in good agreement (in the same order of the magnitude) with theoritical values derived in our work within the bending period region of 2mm-10mm.

  • PDF

Investigations on the Magneto-optical Properties of Bilayered Co/Ni Micro-patterned Anti-dot Arrays

  • Deshpande, N.G.;Zheng, H.Y.;Hwang, J.S.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.251-251
    • /
    • 2012
  • A lot of studies are undergoing on the magneto-optical (MO) properties of patterned magnetic systems for the reason that they have potential application to information technology such as ultrahigh-speed computing. Moreover, they can be considered as the future candidates for high-density MO storage devices. Not only the technical aspects, but there have been also tremendous interests in studying their properties related to the fundamental physics. The MO Kerr-rotation effects (both in reflected and the diffracted modes) and the magnetic force microscopy (MFM) are very useful techniques to investigate the micromagnetic properties of such periodic structures. Hence, in this study, we report on the MO properties of bilayered Cobalt (Co)/ nickel (Ni) micro-patterned anti-dot arrays. Such a ferromagnetic structure was made by sequentially depositing co (40 nm)/Ni (5 nm) bilayer on a Si substrate. The anti-dot patterning with hole diameter of $1{\mu}m$ was done only on the upper Co layer using photolithography technique, while the Ni underlayer was kept uniform. The longitudinal Kerr rotation (LKR) of the zeroth- and the first-order diffracted beams were measured at an incidence of $30^{\circ}$ by using a photoelastic modulator method. The external magnetic field was applied perpendicularly to the reflected and the diffracted beams using an electromagnet capable of a maximum field of ${\pm}5$ kOe. Significantly, it was observed that the LKR of the first-order diffracted beam is nearly 4 times larger than that of the zeroth-order beam. The simulated results for the hysteresis loops matched qualitatively well with the experimentally obtained ones. In conjunction with the LKR, we also investigated the magnetic-domain structure by using a MFM system, which were analyzed to elucidate the origin of the enhanced MO rotation.

  • PDF